Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3949
標題: TiO2/PLGA複合薄膜的製作與應用
Synthesis of Antibacterial TiO2/PLGA Composite Biofilms
作者: 吳昭儀
Wu, Jau-Yi
關鍵字: 二氧化鈦;Titanium dioxide;TiO2/PLGA複合材料;抗菌材料;傷口敷料;TiO2/PLGA composite material;antibacterial material;wound dressing
出版社: 生醫工程研究所
引用: [1] A. Burd and T. Chiu, "Allogenic skin in the treatment of burns," Clin Dermatol, vol. 23, pp. 376-387, 2005. [2] N. Maas-Szabowski, A. Shimotoyodome, and N. E. Fusenig, "Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism," J Cell Sci, vol. 112, pp. 1843-1853, 1999. [3] J. A. Hubbell, "Biomaterials in Tissue Engineering," Bio-Technology, vol. 13, pp. 565-576, 1995. [4] "The Ageing Skin – Structure," pharmaxchange, info, 2011. [5] E. Proksch, J. M. Brandner, and J. M. Jensen, "The skin: an indispensable barrier," Exp Dermatol, vol. 17, pp. 1063-1072, 2008. [6] J. A. McGrath, R. A. Eady, and F. M. Pope, "Rook''s Textbook of Dermatology (7th ed.)," Blackwell Publishing, 2004. [7] D. T. Nguyen, O. D.P., and C. Murphy G.F. "Chapter 4: The Pathophysiologic Basis for Wound Healing and Cutaneous Regeneration. Biomaterials For Treating Skin Loss," Woodhead Publishing (UK/Europe) & CRC Press (US), Cambridge/Boca Raton, 2009. [8] C. Stein and S. Kuchler, "Targeting inflammation and wound healing by opioids," Trends Pharmacol Sci, 2013. [9] W. K. Stadelmann, A. G. Digenis, and G. R. Tobin, "Physiology and healing dynamics of chronic cutaneous wounds," Am J Surg, vol. 176, pp. 26S-38S, 1998. [10] K. S. Midwood, L. V. Williams, and J. E. Schwarzbauer, "Tissue repair and the dynamics of the extracellular matrix," Int J Biochem Cell Biol, vol. 36, pp. 1031-1037, 2004. [11] I. Bedja and P. V. Kamat, "Capped Semiconductor Colloids - Synthesis and Photoelectrochemical Behavior of Tio2-Capped Sno2 Nanocrystallites," Journal of Physical Chemistry, vol. 99, pp. 9182-9188, 1995. [12] P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, and D. Laub, "Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution," J Am Chem Soc, vol. 126, pp. 3868-3879, 2004. [13] R. W. Fessenden and P. V. Kamat, "Rate Constants for Charge Injection from Excited Sensitizer into Sno2, Zno, and Tio2 Semiconductor Nanocrystallites," Journal of Physical Chemistry, vol. 99, pp. 12902-12906, 1995. [14] A. Giraudeau, F. R. F. Fan, and A. J. Bard, "Semiconductor Electrodes .30. Spectral Sensitization of the Semiconductors Normal-Tio2 and Normal-Wo3 with Metal Phthalocyanines," J Am Chem Soc, vol. 102, pp. 5137-5142, 1980. [15] R. Vinu and G. Madras, "Photocatalytic Degradation of Water Pollutants Using Nano-TiO2," in Energy Efficiency and Renewable Energy Through Nanotechnology, L. Zang, Ed., ed: Springer London, pp. 625-677, 2011. [16] M. Landmann, E. Rauls, and W. G. Schmidt, "The electronic structure and optical response of rutile, anatase and brookite TiO2," Journal of Physics-Condensed Matter, vol. 24, 2012. [17] J. Bellessa, V. Voliotis, R. Grousson, X. L. Wang, M. Ogura, and H. Matsuhata, "Quantum-size effects on radiative lifetimes and relaxation of excitons in semiconductor nanostructures," Physical Review B, vol. 58, pp. 9933-9940, 1998. [18] H. B. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida, "Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2," Journal of Materials Chemistry, vol. 11, pp. 1694-1703, 2001. [19] F. Sayilkan, M. Asilturk, S. Sener, S. Erdemoglu, M. Erdemoglu, and H. Sayilkan, "Hydrothermal synthesis, characterization and photocatalytic activity of nanosized TiO2 based catalysts for rhodamine B degradation," Turkish Journal of Chemistry, vol. 31, pp. 211-221, 2007. [20] K.-H. Lee and S.-W. Song, "One-Step Hydrothermal Synthesis of Mesoporous Anatase TiO2 Microsphere and Interfacial Control for Enhanced Lithium Storage Performance," ACS Appl Mater Interfaces, vol. 3, pp. 3697-3703, 2011. [21] B. L. Bischoff and M. A. Anderson, "Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2)," Chemistry of Materials, vol. 7, pp. 1772-1778, 1995. [22] Y. Zhu, L. Zhang, C. Gao, and L. Cao, "The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor," Journal of Materials Science, vol. 35, pp. 4049-4054, 2000. [23] C. Su, B. Y. Hong, and C. M. Tseng, "Sol–gel preparation and photocatalysis of titanium dioxide," Catalysis Today, vol. 96, pp. 119-126, 2004. [24] J. C. Yu, W. Ho, J. Lin, H. Yip, and P. K. Wong, "Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate," Environ Sci Technol, vol. 37, pp. 2296-2301, 2003. [25] K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima, "Bactericidal and detoxification effects of TiO2 thin film photocatalysts," Environ Sci Technol, vol. 32, pp. 726-728, 1998. [26] D. Zhang and L. Qi, "Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes," Chem Commun , pp. 2735-2737, 2005. [27] D. Mitoraj, A. Janczyk, M. Strus, H. Kisch, G. Stochel, P. B. Heczko, and W. Macyk, "Visible light inactivation of bacteria and fungi by modified titanium dioxide," Photochem Photobiol Sci, vol. 6, pp. 642-648, 2007. [28] C. C. Peng, M. H. Yang, W. T. Chiu, C. H. Chiu, C. S. Yang, Y. W. Chen, K. C. Chen, and R. Y. Peng, "Composite nano-titanium oxide-chitosan artificial skin exhibits strong wound-healing effect-an approach with anti-inflammatory and bactericidal kinetics," Macromol Biosci, vol. 8, pp. 316-327, 2008. [29] H. Zhou, J. G. Lawrence, and S. B. Bhaduri, "Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review," Acta Biomater, vol. 8, pp. 1999-2016, 2012. [30] S. S. Lee, P. Hughes, A. D. Ross, and M. R. Robinson, "Biodegradable Implants for Sustained Drug Release in the Eye," Pharm Res, vol. 27, pp. 2043-2053, 2010. [31] P. H. Craig, J. A. Williams, K. W. Davis, A. D. Magoun, A. J. Levy, S. Bogdansky, and J. P. Jones, Jr., "A biologic comparison of polyglactin 910 and polyglycolic acid synthetic absorbable sutures," Surg Gynecol Obstet, vol. 141, pp. 1-10, 1975. [32] A. Nemmar, A. Delaunois, B. Nemery, C. Dessy-Doize, J. F. Beckers, J. Sulon, and P. Gustin, "Inflammatory Effect of Intratracheal Instillation of Ultrafine Particles in the Rabbit: Role of C-fiber and Mast Cells," Toxicology and Applied Pharmacology, vol. 160, pp. 250-261, 1999. [33] A. C. Elder, R. Gelein, M. Azadniv, M. Frampton, J. Finkelstein, and G. Oberdorster, "Systemic effects of inhaled ultrafine particles in two compromised, aged rat strains," Inhalation Toxicology, vol. 16, pp. 461-471, 2004. [34] W. G. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schulz, G. Oberdorster, and A. Ziesenis, "Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low," Journal of Toxicology and Environmental Health-Part A, vol. 65, pp. 1513-1530, 2002. [35] A. Nemmar, M. F. Hoylaerts, P. H. M. Hoet, D. Dinsdale, T. Smith, H. Y. Xu, J. Vermylen, B. Nemery, and B. Nemery, "Ultrafine particles affect experimental thrombosis in an in vivo hamster model," American Journal of Respiratory and Critical Care Medicine, vol. 166, pp. 998-1004, 2002. [36] D. M. Brown, M. R. Wilson, W. MacNee, V. Stone, and K. Donaldson, "Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines," Toxicol Appl Pharmacol, vol. 175, pp. 191-199, 2001. [37] N. Li, C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, and A. Nel, "Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage," Environ Health Perspect, vol. 111, pp. 455-460, 2003. [38] K. Donaldson and V. Stone, "Current hypotheses on the mechanisms of toxicity of ultrafine particles," Ann Ist Super Sanita, vol. 39, pp. 405-10, 2003. [39] K. Donaldson, D. Brown, A. Clouter, R. Duffin, W. MacNee, L. Renwick, L. Tran, and V. Stone, "The pulmonary toxicology of ultrafine particles," Aerosol Medicine-Deposition Clearance and Effects in the Lung, vol. 15, pp. 213-220, 2002. [40] D. M. Brown, M. R. Wilson, W. MacNee, V. Stone, and K. Donaldson, "Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines," Toxicology and Applied Pharmacology, vol. 175, pp. 191-199, 2001. [41] G. J. Nohynek, E. K. Dufour, and M. S. Roberts, "Nanotechnology, cosmetics and the skin: Is there a health risk?," Skin Pharmacology and Physiology, vol. 21, pp. 136-149, 2008. [42] 張章堂, 鄧燕妮, 賴裕順, and 莊一全, "環境中奈米微粒之細胞毒性研究", 行政院環境保護署委辦計畫成果, 計畫編號: EPA-98-U1U1-02-104, 2009. [43] J. K. Savaiano and T. J. Webster, "Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites," Biomaterials, vol. 25, pp. 1205-1213, 2004. [44] B. M. Min, Y. You, J. M. Kim, S. J. Lee, and W. H. Park, "Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts," Carbohydrate Polymers, vol. 57, pp. 285-292, 2004. [45] G. E. Park, M. A. Pattison, K. Park, and T. J. Webster, "Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds," Biomaterials, vol. 26, pp. 3075-3082, 2005. [46] T. J. Webster, Z. Tong, J. Liu, and M. Katherine Banks, "Adhesion of Pseudomonas fluorescens onto nanophase materials," Nanotechnology, vol. 16, pp. S449-457, 2005. [47] D. C. Miller, K. M. Haberstroh, and T. J. Webster, "PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion," J Biomed Mater Res A, vol. 81, pp. 678-684, 2007. [48] T. W. Chung, D. Z. Liu, S. Y. Wang, and S. S. Wang, "Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale," Biomaterials, vol. 24, pp. 4655-4661, 2003. [49] T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, "Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients," Biomaterials, vol. 28, pp. 2175-2182, 2007. [50] E. R. Takamori, R. Cruz, F. Goncalvez, R. V. Zanetti, A. Zanetti, and J. M. Granjeiro, "Effect of roughness of zirconia and titanium on fibroblast adhesion," Artif Organs, vol. 32, pp. 305-309, 2008. [51] "JIS Z2801:2000. Antimicrobial products-test for antimicrobial activity and efficacy, " Japanese Industrial Standard, 2001. [52] D. Li and R. B. Kaner, "Shape and Aggregation Control of Nanoparticles: Not Shaken, Not Stirred," J Am Chem Soc, vol. 128, pp. 968-975, 2005. [53] A. Chwalibog, E. Sawosz, A. Hotowy, J. Szeliga, S. Mitura, K. Mitura, M. Grodzik, P. Orlowski, and A. Sokolowska, "Visualization of interaction between inorganic nanoparticles and bacteria or fungi," Int J Nanomedicine, vol. 5, pp. 1085-1094, 2010. [54] H. Hitkova, A. Stoyanova, N. Ivanova, M. spedkova, V. popova, R. Iordanoca, and A. Bachvarova-Nedelcheva, "Study of antibacterial activity of nonhydrolytic synthesized TiO2 against E .coli, P. aeruginosa and S. aureus," Journal of Optoelectronics and Biomedical Materials, vol. 4, pp. 9-17, 2012. [55] S. Varghese, S. Kuriakose, and S. Jose, "Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria," Journal of Nanoscience, vol. 2013, p. 5, 2013. [56] H. Negi, P. Rathinavelu Saravanan, T. Agarwal, M. Ghulam Haider Zaidi, and R. Goel, "In vitro assessment of Ag2O nanoparticles toxicity against Gram-positive and Gram-negative bacteria," J Gen Appl Microbiol, vol. 59, pp. 83-88, 2013. [57] A. K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, and C. Guillard, "Photocatalytic inactivation of Escherischia coli - Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation," Applied Catalysis B-Environmental, vol. 76, pp. 257-263, 2007. [58] T. Asahara, H. Koseki, T. Tsurumoto, K. Shiraishi, H. Shindo, K. Baba, H. Taoda, and N. Terasaki, "The bactericidal efficacy of a photocatalytic TiO2 particle mixture with oxidizer against Staphylococcus aureus," Jpn J Infect Dis, vol. 62, pp. 378-380, 2009. [59] J. Davda and V. Labhasetwar, "Characterization of nanoparticle uptake by endothelial cells," International Journal of Pharmaceutics, vol. 233, pp. 51-59, 2002. [60] F. Marano, S. Hussain, F. Rodrigues-Lima, A. Baeza-Squiban, and S. Boland, "Nanoparticles: molecular targets and cell signalling," Arch Toxicol, vol. 85, pp. 733-741, 2011. [61] K. Buyukhatipoglu and A. M. Clyne, "Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation," Journal of Biomedical Materials Research Part A, vol. 96A, pp. 186-195, 2011. [62] J. Wang, Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou, B. Li, Y. Zhao, Z. Chai, and C. Chen, "Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles," Toxicology, vol. 254, pp. 82-90, 2008. [63] F. G. Torres, S. N. Nazhat, S. H. S. M. Fadzullah, V. Maquet, and A. R. Boccaccini, "Mechanical properties and bioactivity of porous PLGA/TiO(2) nanoparticle-filled composites for tissue engineering scaffolds," Composites Science and Technology, vol. 67, pp. 1139-1147, 2007. [64] S. Y. Lu, D. L. Xia, G. J. Huang, H. X. Jing, Y. F. Wang, and H. Y. Gu, "Concentration effect of gold nanoparticles on proliferation of keratinocytes," Colloids and Surfaces B-Biointerfaces, vol. 81, pp. 406-411, 2010. [65] P. Tucci, G. Porta, M. Agostini, D. Dinsdale, I. Iavicoli, K. Cain, A. Finazzi-Agro, G. Melino, and A. Willis, "Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes," Cell Death Dis, vol. 4, 2013. [66] G. J. Wang, Y. C. Lin, C. W. Li, C. C. Hsueh, S. H. Hsu, and H. S. Hung, "Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates," Biomed Microdevices, vol. 11, pp. 843-850, 2009. [67] Y. Cao, B. Zhang, T. Croll, B. E. Rolfe, J. H. Campbell, G. R. Campbell, D. Martin, and J. J. Cooper-White, "Engineering tissue tubes using novel multilayered scaffolds in the rat peritoneal cavity," Biomedical Materials Research Part A, vol. 87A, pp. 719-727, 2008. [68] C. Gretzer, L. Emanuelsson, E. Liljensten, and P. Thomsen, "The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials," Biomaterials Science-Polymer Edition, vol. 17, pp. 669-687, 2006. [69] W. J. Hu, J. W. Eaton, and L. P. Tang, "Molecular basis of biomaterial-mediated foreign body reactions," Blood, vol. 98, pp. 1231-1238, 2001. [70] W. J. Kao, J. A. Hubbell, and J. M. Anderson, "Protein-mediated macrophage adhesion and activation on biomaterials: a model for modulating cell behavior," Materials Science-Materials in Medicine, vol. 10, pp. 601-605, 1999. [71] B. C. Kang, K. S. Kang, and Y. S. Lee, "Biocompatibility and long-term toxicity of InnoPol((R)) implant, a biodegradable polymer scaffold," Experimental Animals, vol. 54, pp. 37-52, 2005. [72] F. R. Formiga, E. Garbayo, P. Diaz-Herraez, G. Abizanda, T. Simon-Yarza, E. Tamayo, F. Prosper, and M. J. Blanco-Prieto, "Biodegradation and heart retention of polymeric microparticles in a rat model of myocardial ischemia," Eur J Pharm Biopharm, 2013. [73] H. Chang, C. C. Ho, C. S. Yang, W. H. Chang, M. H. Tsai, H. T. Tsai, and P. Lin, "Involvement of MyD88 in zinc oxide nanoparticle-induced lung inflammation," Exp Toxicol Pathol, 2013. [74] W. Yu, X. Wang, X. Hu, H. Sun, and C. Han, "Preliminary evaluation of the biological properties of poly-lactide-co-glycolic acid (PLGA) knitted mesh," Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, vol. 28, pp. 163-169, 2011. [75] C. C. Ho, H. Chang, H. T. Tsai, M. H. Tsai, C. S. Yang, Y. C. Ling, and P. Lin, "Quantum dot 705, a cadmium-based nanoparticle, induces persistent inflammation and granuloma formation in the mouse lung," Nanotoxicology, vol. 7, pp. 105-115, 2013. [76] N. Ambalavanan, A. Stanishevsky, A. Bulger, B. Halloran, C. Steele, Y. Vohra, and S. Matalon, "Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice," Physiology-Lung Cellular and Molecular Physiology, vol. 304, pp. L152-L161, 2013.
摘要: 
本研究結合具光觸媒效應之奈米TiO2與具生物可降解性之PLGA高分子生醫材料,製作出具主動抗菌性與生物相容性之複合薄膜,期望能做為皮膚傷口之敷料。由於TiO2能分解附近之有機物,因此有抗菌之效用,但細胞體積較細菌大十倍以上,藉由調控TiO2的濃度,可使薄膜具有足夠抗菌效果,但卻不會產生細胞毒性,達到傷口敷料之主動抗菌效用並促進傷口之快速癒合,進而降低傷口敷料之更換頻率。本研究以水熱法及溶膠-凝膠法製備具銳鈦礦晶格相之TiO2,再將TiO2奈米顆粒與PLGA溶液混合,待溶液揮發後,形成抗菌複合薄膜,以大腸桿菌與金黃色葡萄球菌進行抗菌試驗,以人類角質細胞、牛頸動脈內皮細胞與老鼠纖維母細胞進行材料對細胞毒性測試,更進一步以老鼠皮下埋入測試其生物相容性。結果顯示以溶膠-凝膠法製備之TiO2具有銳鈦礦晶格相,且薄膜表面TiO2顆粒會隨濃度增加而有聚集現象,此複合薄膜在TiO2濃度10%時具有良好的的抗菌力,但對角質細胞及纖維母細胞不具有細胞毒性,對皮下組織也無不良之組織反應,為適合用於傷口敷料之TiO2濃度。但當TiO2濃度為10%時,對內皮細胞之細胞毒性較大,故此濃度之薄膜較不適合應用於深層傷口之修復。

The main purpose of this study was to develop a TiO2/PLGA composite biomaterial for artificial dressing applications. Hydrothermal method and Sol-gel method were used for the preparation of anatase phase of nano TiO2 powder. E. coli and S. aureus were used as biological indicators for the disinfection efficiency of the proposed TiO2/PLGA composite. Various concentration ratios of TiO2 verse PLGA were implemented to optimize the disinfection efficiency of the composite biomaterial. Cell seedings of HaCaTs, L929s, and BECs on the TiO2/PLGA composite biofilms were conducted to evaluate the feasibility of the TiO2/PLGA composite biomaterial on wound healing applications in vitro. The feasibility biocompatible biofilm was further assessed by rat subcutaneous implantation to investigate the histological effect in vivo. The results illustrated that Sol-gel method could prepare anatase phase of nano TiO2 powder. TiO2/PLGA composite biofilms containing 10% of TiO2 nanoparticles revealed an effective antibacterial property, kept well survival rate on HaCaTs and L929s growth, and showed relative safe stability on tissue implantation. Although the biofilms containing 10% TiO2 nanoparticles illustrated good biocompatibility on HaCaTs and L929s, it also expressed certain cytotoxicity on BECs. Therefore, TiO2/PLGA composite biofilms containing 10% of TiO2 nanoparticles was more suitable on less-endothelial cells tissue, such as epidermis of skin.
URI: http://hdl.handle.net/11455/3949
其他識別: U0005-2207201317143800
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.