Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3953
標題: 以奈米線場效電晶體探討電子元件介面對神經細胞生長的影響
Investigation on Bioelectronic Interface with Neuron-Based Silicon Nanowire Field-Effect Transistors
作者: 康毓珊
Kang, Yu-Shan
關鍵字: 矽奈米線場效電晶體;SiNW-FET;細胞感測器;表面修飾;PC12細胞;cell-based biosensor;surface modification;PC12 cells
出版社: 生醫工程研究所
引用: 1. Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, et al. Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science 2006;313(5790):1100-1104. 2. Zheng G, Patolsky F, Lieber CM. Nanowire biosensors: a tool for medicine and life science. Nanomedicine: Nanotechnology, Biology and Medicine 2006;2(4):277. 3. Morin F, Nishimura N, Griscom L, LePioufle B, Fujita H, Takamura Y, et al. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: A step towards neuron-based functional chips. Biosensors and Bioelectronics 2006;21(7):1093-1100. 4. 務‧向坂栄夫 福, 浩治 栗豐扇. 圖解簡明 電子電路: 建興文化事業有限公司, 2006. 5. 菊地正典. 圖解半導體:科技業的黑色鍊金術: 世茂出版社, 2004. 6. 菊地正典. 圖解半導體製造裝置: 世茂出版社, 2008. 7. 劉君祖. 闡明掌控思考與行為的細胞. Newton. 2001:61-69. 8. Luderer F, Walschus U, Wittmann C. Immobilization of Oligonucleotides for Biochemical Sensing by Self-Assembled Monolayers: Thiol-Organic Bonding on Gold and Silanization on Silica Surfaces Immobilisation of DNA on Chips I. Springer Berlin / Heidelberg, 2005. p. 37-56. 9. 謝婭暄. 金奈米粒子生物感測元件的製作: 國立中興大學; 2008. 10. Shaya O, Amit I, Einati H, Burstein L, Shacham-Diamand Y, Rosenwaks Y. Molecular gating of transistors by amine-terminated layers. Applied Surface Science 2012;258(8):4069-4072. 11. Nakano M, Ishida T, Sano H, Sugimura H, Miyake K, Ando Y, et al. Tribological properties of self-assembled monolayers covalently bonded to Si. Applied Surface Science 2008;255(5, Part 2):3040-3045. 12. Nelson DL, Cox MM. Principles of biochemistry. Lehninger, 2008. 13. SIGMA-Aldrich. Poly-D-lysine Hydrobromide. http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/1/p7280pis.Par.0001.File.tmp/p7280pis.pdf. 14. Sugimura H. Self-Assembled Monolayer on Silicon. 15. Huang Y, Chen P. Nanoelectronic Biosensing of Dynamic Cellular Activities Based on Nanostructured Materials. Advanced Materials 2010;22(25):2818-2823. 16. Ariano P, Lo Giudice A, Marcantoni A, Vittone E, Carbone E, Lovisolo D. A diamond-based biosensor for the recording of neuronal activity. Biosensors and Bioelectronics 2009;24(7):2046-2050. 17. Bieberich E, Guiseppi-Elie A. Neuronal differentiation and synapse formation of PC12 and embryonic stem cells on interdigitated microelectrode arrays:: Contact structures for neuron-to-electrode signal transmission (NEST). Biosensors and Bioelectronics 2004;19(8):923-931. 18. Wang P, Xu G, Qin L, Xu Y, Li Y, Li R. Cell-based biosensors and its application in biomedicine. Sensors and Actuators B: Chemical 2005;108(1-2):576-584. 19. Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, et al. Study of osteoblastic cells in a microfluidic environment. Biomaterials 2006;27(4):586-595. 20. Li Jeon N, Baskaran H, Dertinger SKW, Whitesides GM, Van De Water L, Toner M. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotech 2002;20(8):826-830. 21. El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006;442(7101):403-411. 22. Chong KF, Loh KP, Vedula SRK, Lim CT, Sternschulte H, Steinmuller D, et al. Cell Adhesion Properties on Photochemically Functionalized Diamond. Langmuir 2007;23(10):5615-5621. 23. Gu MB, Mitchell RJ, Kim BC. Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 2004;87:269-305. 24. Luc B. Whole cell biosensors. Sensors and Actuators B: Chemical 1996;34(1-3):270-275. 25. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA. Development and Application of Cell-Based Biosensors. Annals of Biomedical Engineering 1999;27(6):697-711. 26. Chang JC, Brewer GJ, Wheeler BC. Modulation of neural network activity by patterning. Biosensors and Bioelectronics 2001;16(7-8):527-533. 27. DeBusschere BD, Kovacs GTA. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosensors and Bioelectronics 2001;16(7-8):543-556. 28. Wang P, Liu Q, Xu Y, Cai H, Li Y. Olfactory and taste cell sensor and its applications in biomedicine. Sensors and Actuators A: Physical 2007;139:131-138. 29. Narayanan S, Nikkhah M, Strobl JS, Agah M. Analysis of the passivation layer by testing and modeling a cell impedance micro-sensor. Sensors and Actuators A: Physical 2010;159(2):241-247. 30. Valero T, Moschopoulou G, Kintzios S, Hauptmann P, Naumann M, Jacobs T. Studies on neuronal differentiation and signalling processes with a novel impedimetric biosensor. Biosensors and Bioelectronics 2010;26(4):1407-1413. 31. Kafi MA, Kim T-H, Yea C-H, Kim H, Choi J-W. Effects of nanopatterned RGD peptide layer on electrochemical detection of neural cell chip. Biosensors and Bioelectronics 2010;26(4):1359-1365. 32. Slaughter GE, Hobson R. An impedimetric biosensor based on PC 12 cells for the monitoring of exogenous agents. Biosensors and Bioelectronics 2009;24(5):1153-1158. 33. Baur K, Singh A, Wang J, Kerner J, Pianetta P. Investigation of Na impurities on Si wafer surfaces using TXRF. AIP Conference Proceedings 2000;521:161-166 34. Cabeca R, Martins V, Ferraria AM, do Rego AMB, Brogueira P, Prazeres DMF, et al. Patterned functionalization layer for sub-uL DNA solid-phase immobilization and hybridization. Sensors and Actuators B: Chemical 2010;149(2):432-438. 35. Meissner R, Eker B, Kasi H, Bertsch A, Renaud P. Distinguishing drug-induced minor morphological changes from major cellular damage via label-free impedimetric toxicity screening. Lab on a Chip 2011;11(14):2352-2361.
摘要: 
本研究乃以細胞為基底之生物感測器(cell-based biosensor),進行體外神經細胞培養及神經細胞生長監測,將神經細胞可以培養於表面修飾之矽奈米線場效電晶體(silicon nanowire field effect transistor, SiNW-FET),並偵測周遭環境改變所引起神經細胞的變異及監控細胞生長的情形。藉由3-aminopropyl trimethoxysilane(APTMS)單分子層膜(self-assembled monolayer, SAM)修飾表面在SiNW,以在不同pH值(pH 2, 4, 6, 7.4, 9, 11)的poly-D-lysine(PDL)溶液做APTMS-SAM鍵結,評估何種修飾條件最有利於PC12細胞的貼附,以當作一個高感度以細胞為基底之生物感測器。此論文中,利用原子力顯微鏡(atomic force microscopy, AFM)掃描表面粗糙度及化學分析電子能譜儀(electron spectroscopy for chemical analysis, ESCA)分析修飾於矽基材的化學元素及鍵結,AFM結果顯示以pH= 2和pH= 7.4高度差較為明顯,ESCA分析發現在pH值愈高的修飾情況下氮含量較多。將PC12細胞培養於經APTMS/PDL修飾之SiNW,經過48小時培養後,加入神經生長因子(10 ng/ml nerve growth factor, NGF),使之分化成類交感神經細胞,形成神經網路(neuronal networks),並以掃描式電子顯微鏡(scanning electron microscope, SEM)觀察細胞的表面型態及分佈,發現於pH= 2, 4, 6, 7.4的PDL環境下所修飾之細胞貼附與生長效果較好,其中,選用pH= 7.4為最佳條件。在訊號監測部分,利用電壓量測與阻抗分析系統,評估PC12細胞生長的情形,結果發現溶液中含有離子成份愈多,會使電壓和阻抗值下降,而未分化PC12及已分化PC12細胞電壓與阻抗值都有明顯的差異,經過七天持續NGF的刺激,觀察電壓與阻抗值上升的變化,並且探討在微型空間內培養和體外刺激觀察PC12細胞生長。

Cell-based biosensor was composed of silicon nanowire field effect transistors (SiNW-FETs) and PC12 neuronal cells for investigating and monitoring cell growth under varied environment in this study. The self-assembled monolayer (SAM) of 3-aminopropyl trimethoxysilane (APTMS) was modified on the SiNW for subsequent immobilization of poly-D-lysine (PDL) under different pH values (pH 2, 4, 6, 7.4, 9, 11). Atomic force microscopy (AFM) and electron spectroscopy for chemical analysis (ESCA) were used to characterize the topography and specific chemical bond during the surface modification. Scanning electron microscope (SEM) was used to verify which condition of surface modification was suitable for PC12 cell growth. The results of AFM showed that the modification of PDL on APTMS SAMs were relatively thicker in the conditions of pH= 2 and pH= 7.4. ESCA analyses found the content of nitrogen was relatively higher at pH 11 of PDL solution. After 48 hr of culture on PDL immobilized APTMS SAMs modified SiNW. PC12 cells were treated with 10 ng/ml nerve growth factor (NGF) to form neuronal network. The cell morphology and distribution was observed by SEM and showed that better cell attachment and growth at pH= 2, 4, 6, and 7.4 modified conditions. Our results suggested pH 7.4 PDL solution as the best surface modified condition on APTMS SAMs surface. The voltage measurement system and impedance analysis were respectively used to assess PC12 cell growth. We found that voltage and impedance values were decreased in culture media. The values of voltage and impedance were different between undifferentiated and differentiated PC12 cells. After NGF treatment, we measured the changes of voltage and impedance for 7 consecutive days for - in vitro observing cell growth.
URI: http://hdl.handle.net/11455/3953
其他識別: U0005-3107201218250200
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.