Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3954
標題: 以微脂體包覆電腦斷層顯影劑對腫瘤良、惡性篩檢之影響
Influence of contrast agent encapsulation in liposome on lesion malignancy screening under dynamic computed tomography
作者: 胡力哲
Hu, Li-Che
關鍵字: 微脂體;liposome;電腦斷層;腫瘤篩選;顯影劑誘發腎變;computed tomography;lesion screening;contrast medium induced nephropathy
出版社: 生醫工程研究所
引用: [1]J. H. Lee, E. L. Rosen, D. A. Mankoff, The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 1-overview, detection, and staging,Journal of Nuclear Medicine, 50:569-581, 2009. [2]W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, O. B. Ioffe, Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,Radiology,233:830– 849, 2004. [3]U. Veronesi, P. Boyle, A. Goldhirsch, R.Orecchia,G.Viale, Breast cancer, The Lancet, 365:1727–1741, 2005. [4]H. Schoder, M. Gonen, Screening for cancer with PET and PET/CT: potential and limitations, Journal of Nuclear Medicine, 48 Suppl 1:4–18, 2007. [5]M. D. Lacambra, C. C. Lam, P. Mendoza, S. K. Chan, A. M. Yu, J. Y. Tsang, P. H. Tan, G. M. Tse, Biopsy sampling of breast lesions: comparison of core needle- and vacuum-assisted breast biopsies, Breast Cancer Research and Treatment, 132:917–923, 2012. [6]E. Cho, M.H. Kim, S.H. Cha, S.H. Cho, S.J. Oh, J.D. Lee, Breast cancer cutaneous metastasis at core needle biopsy site, Annals of Dermatology, 22: 238–240, 2010. [7]T. G. John, O. J. Garden, Needle track seeding of primary and secondary liver carcinoma after percutaneous liver biopsy, HPB Surgery, 6: 199–203, 1993. [8]T. G. Gleeson, S. Bulugahapitiya, Contrast-Induced Nephropathy, American Journal of Roentgenology, 183: 1673–1689, 2004. [9]I. Goldenberg, S. Matetzky, Nephropathy induced by contrast media: pathogenesis, risk factors and preventive strategies, Canadian Medical Association , 172: 1461– 1471, 2005. [10]N. D. Santos, C. Allen, A. M. Doppen, M. Anantha, K. A. K. Cox, R. C. Gallagher, G. Karlsson, K. Edwards, G. Kenner, L. Samuels, M. S. Webb, M. B. Ball, Influence of poly (ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding, Biochimica et Biophysica Acta, 1768: 1367–137, 2007. [11]A. A. Gabizon, Liposome circulation time and tumor targeting: implications for cancer chemotherapy, Advanced Drug Delivery Reviews, 16: 285–294, 1995. [12]J. D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics, Advanced Drug Delivery Reviews , 60: 1615–1626, 2008. [13]H. Maeda, The Enhanced Permeability and Retention (EPR) Effect In Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting, Advances in Enzyme Regulation, 41: 189–207, 2001. [14]H. Maeda, Macromolecular therapeutics in cancer treatment: The EPR effect and beyond, Journal of Controlled Release , 164: 138–144, 2012. [15]D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology, 2: 751–760, 2007. [16]N. Lee, S.H. Choi, T. Hyeon, Nano-Sized CT Contrast Agents, Advanced Materials, 25:2641–2660, 2013. [17]P. Gargiulo, T. Helgason, P. Ingvarsson, W. Mayr, H. Kern, U. Carraro, Medical image analysis and 3-d modeling to quantify changes and functional restoration in denervated muscle undergoing electrical stimulation treatment, Human-centric Computing and Information Sciences, 2, 2012. [18]E. K. Fishman, Introduction to 64-slice CT and its role in coronary imaging, Applied Radiology , 34:8–13, 2005. [19]M. Inoue, T. Sano, R. Watai, R. Ashikaga, K. Ueda, M. Watatani, Y. Nishimura, Dynamic multidetector CT of breast tumors: diagnostic features and comparison with conventional techniques, American Journal of Roentgenology, 181:679- 686, 2003. [20]A. Perrone, L. L. Mele, S. Sassi, M. Marini, L. Testaverde, L. Izzo, M. Marini, MDCT of the Breast, American Journal of Roentgenology, 190: 1644–1651, 2008. [21]H. Thomas, Adair and Jean-Pierre Montani. Angiogenesis, Morgan & Claypool Life Sciences, 2010. [22]P. Carmeliet, R. K. Jain, Angiogenesis in cancer and other diseases, Nature, 407:249–257, 2000. [23]G. Bergers, L. E. Benjamin, Tumorigenesis and the angiogenic switch, Nature Reviews Cancer, 3:401–410, 2003. [24]P. Armitage, C. Behrenbruch, M. Brady, N. Moore, Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast, Medical Image Analysis , 9:315–329, 2005. [25]R. Mehran, E. Nikolsky, Contrast-induced nephropathy: definition, epidemiology, and patients at risk, Kidney International Supplements, 69:511–515, 2006. [26]C. Briguori, D. Tavano, A. Colombo, Contrast agent-associated nephrotoxicity, Progress in Cardiovascular Diseases, 445:493–503, 2006. [27]P.B. Persson, P. Hansell, P. Liss, Pathophysiology of contrast medium–induced nephropathy, Kidney International , 68:14–22, 2005. [28]M. Tepel, P. Aspelin, N. Lameire, Contrast-induced nephropathy:a clinical and evidence-based approach, Circulation , 113: 1799–1806, 2006. [29]李惠娟,顯影劑引起之腎毒性,成醫藥誌第十九卷第五期,2009 [30]R. Solomon, The role of osmolality in the incidence of contrastinduced nephropathy: a systematic review of angiographic contrast media in high risk patients, Kidney International, 68:2256–2263, 2005. [31]A. Dencausse, X. Violas, H. Feldman, P. Havard, C. Chambon, Pharmacokinetic profile of iobitridol, Acta radiologica Supplementum, 400:25–34, 1996. [32]L. Paul, Iobitridol, Clinical Drug Investigation, 33:155–166, 2013. [33]M. R. Rudnick, A. Kesselheim, S. Goldfarb, Contrast-induced nephropathy: how it develops, how to prevent it, Cleveland Clinic Journal of Medicine, 73:75–80, 2006. [34]G. Romano, C. Briguori, C. Quintavalle, C. Zanca, N. V. Rivera, A. Colombo, G. Condorelli, Contrast agents and renal cell apoptosis, European Heart Journal, 20:2569–2576, 2008. [35]M. Brezis, A. S. Rosen, Hypoxia of the renal medulla: its implications for disease, The New England Journal of Medicine, 332: 647–655, 1995. [36]A. Dencausse, X. Violas, H. Feldman, P. Havard, C. Chambon, Pharmacokinetic profile of iobitridol, Acta radiologica Supplementum, 400:25–34, 1996. [37]J. M. Idee, C. Bault, H. Beaufils, C. Berthommier, J. Cambar, C. Corot, D. Doucet, C. Hartl, M. C. Jaudon, C. Jacquiaud, B. Lakhdar, M. Potier, R. santus, S. Torcherie, E. Vaudon, B. Bonnemain, Pharmacologic profile of iobitridol, a nonionic iodinated contrast medium, Acta radiologica Supplementum, 400:35–48, 1996. [38]D. E. Rollins, C. D. Klaassen, Biliary excretion of drugs in man, Clinical Pharmacokinetics, 4:368–379, 1979. [39]I. Bekersky, R. M. Fielding, D. E. Dressler, J. W. Lee, D. N. Buell, T. J. Walsh, Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans, Antimicrobial Agents and Chemotherapy, 46:828–33, 2002. [40]L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, O. C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clinical Pharmacology & Therapeutics, 83:761–769, 2007. [41]M. E. O''Brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D. G. Kieback, P. Tomczak, S. P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler, Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer, Annals of Oncology, 15: 440–449, 2004. [42]A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, A. J. Lacave, Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan, Journal of Clinical Oncology , 19:3312–3322, 2001. [43]O. Lyass, B. Uziely, R. Ben-Yosef, D. Tzemach, N. I. Heshing, M. Lotem , G. Brufman, A. Gabizon, Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma, Cancer. , 89:1037–1047, 2000. [44]K. B. Ghaghada, R. R. Colen, C. R. Hawley, N. Patel, S. Jr. Mukundan, Liposomal contrast agents in brain tumor imaging, Neuroimaging Clinics of North America, 20:367–378, 2010. [45]R. Saito, M. T. Krauze, J. R. Bringas, C. Noble, T. R. McKnight, P. Jackson , M. F. Wendland, C. Mamot, D. C. Drummond, D. B. Kirpotin, K. Hong, M. S. Berger, J. W. Park, K. S. Bankiewicz, Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain, Experimental Neurology, 196:381–389, 2005. [46]K. B. Ghaghada, M. Ravoori, D. Sabapathy, J. Bankson, V. Kundra, A. Annapragada, New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging, Academic Journal, 4: 1–7, 2009. [47]W. J. Mulder, G. J. Strijkers, J. W. Habets, E. J. Bleeker, D. W. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, K. Nicolay, MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle, The FASEB Journal , 19:2008–2010, 2005. [48]H. Fattahi, S. Laurent, F. Liu, N. Arsalani, E. L. Vander, R. N. Muller, Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics, Nanomedicine (london england), 6:529–544, 2011. [49]K. Na, S. A. Lee, S. H. Jung, B. C. Shin, Gadolinium-based cancer therapeutic liposomes for chemotherapeutics and diagnostics, Colloids and Surfaces B: Biointerfaces, 84:82–87, 2011. [50]C. T. Badea, K. K. Athreya, G. Espinosa, D. Clark, G. A. Paiman, Y. Li, D. G. Kirsch, J. G. Allan, A. Annapragada, K. B. Ghaghada, Computed tomography imaging of primary lung cancer in mice using a liposomal-iodinated contrast agent, Academic Journal , 7:1–7, 2012. [51]A. Havron, S. E. Seltzer, M. A. Davis, P. Shulkin, Radiopaque Liposomes: a promising new contrast material for computed tomography of the spleen, Radiology, 140:507–511, 1981. [52]P. J. Ryan, M. A. Davis, L. R. DeGaeta, B. Woda, D. L. Melchior, Liposomes loaded with contrast material for image enhancement in computed tomography–work in progress, Radiology, 152:759–762, 1984. [53]E. E. Paoli, D. E. Kruse, J. W. Seo, H. Zhang, A. Kheirolomoom, K. D. Watson, P. Chiu, H. Stahlberg, K. W. Ferrara, An optical and microPET assessment of thermally-sensitive liposome biodistribution in the Met-1 tumor model: Importance of formulation, Journal of Controlled Release, 143:13–22, 2010. [54]AVESTIN, Inc. and AVESTIN Europe GmbH http://www.avestin.com/ [55]D. J. George, Quasielastic light scattering, American Chemical Society, 62:1049–1057, 1990. [56]A. Shibata, T. Nagaya, T. Imai, H. Funahashi, A. Nakao, H. Seo, Inhibition of NF-κB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells, Breast Cancer Research and Treatment, 73:237–243, 2002. [57]L. Bogin, H. Degani, Hormone regulation of VEGF in orthotopic MCF-7 human breast cancer, Cancer Research, 62:1948–1951, 2002. [58]J. E. Lee, K. W. Chung, W. Han, S. W. Kim, H. J. Shin, J . Y. Bae, D. Y. Noh, Effect of estrogen, tamoxifen and epidermal growth factor on the transcriptional regulation of vascular endothelial growth factor in breast cancer cells, Anticancer Research, 24:3961–3964, 2004. [59]S. Garvin, C. Dabrosin, Tamoxifen inhibits secretion of vascular endothelial growth factor in breast cancer in vivo, Cancer Research, 63:8742–8748, 2003. [60]Royal Philips http://www.philips.com.tw/ [61]C. M. Sehgal, S. P. Weinstein, P. H. Arger, E. F. Conant, A review of breast ultrasound, Journal of Mammary Gland Biology and Neoplasia, 11(2): 113-123,2006. [62]C. Quintavalle, M. Brenca, F. DeMicco, D. Fiore, S. Romano, M. F. Romano, F. Apone, A. Bianco, M. A. Zabatta, G. Troncone, C. Briguori, G. Condorelli, In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis, Cell Death & Disease. 2, e15, 2011. [63]M. Colby, S. Yuksel, I. Uslan, G. Acarturk, O. Karaman, O. Bas, H. Mollaoglu, Novel approach for the prevention of contrast nephropathy, Experimental and Toxicologic Pathology, 62, 81–89, 2010.
摘要: 
本研究利用微脂體高生物相容奈米結構特性包覆臨床電腦斷層顯影劑,以期
能一方面加強篩選良、惡性腫瘤的效率,另一方面也能降低使用顯影劑造成的風
險(誘發腎病變)。在觀察裸鼠活體動態顯影趨勢下,我們發現以長效循環微脂體
包覆後,惡性腫瘤顯影增強維持時間由 2 小時內(無微脂體包覆),可因微脂體
EPR 效應延長至 24 小時以上;當惡性腫瘤顯影提升達極值時,微脂體包覆使其訊
號提升與良性腫瘤或周邊正常組織相比比例(>4 倍),遠高於未包覆顯影劑於沖蝕
現象期間(良性腫瘤或周邊正常組織仍有一定顯影增強)產生的對比(2 倍)。
在防治顯影劑誘發腎變上,我們初步實驗結果證實微脂體可增加顯影劑經由
膽道排除的程度(於第 1 小時上升 12 倍),同時藉由減短顯影劑在腎臟累積的時間、減低顯影劑在腎臟累積的濃度,可降低腎臟組織吸收顯影劑影響的時間和程
度,進一步減低誘發腎病變的風險。
URI: http://hdl.handle.net/11455/3954
其他識別: U0005-1908201318243600
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.