Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3956
標題: 以近紅外光螢光物Diglucosamid-SIDAG 篩檢腫瘤良、惡性的機制探討
Mechanism of near-infrared fluorophore, diglucosamid-SIDAG, for lesion malignancy screening
作者: 老嘉瑜
Lau, Jia -Yu
關鍵字: 近紅外光螢光物;Diglucosamid-SIDAG;乳癌;組織與細胞階層吸收;breast cancer;tissue and cells uptake
出版社: 生醫工程研究所
引用: [1]A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, "Cancer statistics, 2009," CA: a cancer journal for clinicians, vol. 59, pp. 225-249, 2009. [2]F. A. Mettler, A. C. Upton, C. A. Kelsey, R. N. Ashby, R. D. Rosenberg, and M. N. Linver, "Benefits versus risks from mammography: A critical reasessment," Cancer, vol. 77, pp. 903-909, 1996. [3]W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, "Diagnostic Accuracy of Mammography, Clinical Examination, US, and MR Imaging in Preoperative Assessment of Breast Cancer1," Radiology, vol. 233, pp. 830-849, 2004. [4]M. Kriege, C. T. M. Brekelmans, C. Boetes, P. E. Besnard, H. M. Zonderland, I. M. Obdeijn, R. A. Manoliu, T. Kok, H. Peterse, and M. M. A. Tilanus-Linthorst, "Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition," New England Journal of Medicine, vol. 351, pp. 427-437, 2004. [5]C. M. Sehgal, S. P. Weinstein, P. H. Arger, and E. F. Conant, "A review of breast ultrasound," Journal of mammary gland biology and neoplasia, vol. 11, pp. 113-123, 2006. [6]H. I. Vargas, M. P. Vargas, K. D. Gonzalez, K. Eldrageely, and I. Khalkhali, "Outcomes of sonography-based management of breast cysts," The American journal of surgery, vol. 188, pp. 443-447, 2004. [7]S. G. Orel and M. D. Schnall, "MR Imaging of the Breast for the Detection, Diagnosis, and Staging of Breast Cancer1," Radiology, vol. 220, pp. 13-30, 2001. [8]N. Houssami, S. Ciatto, I. Ellis, and D. Ambrogetti, "Underestimation of malignancy of breast core‐needle biopsy," Cancer, vol. 109, pp. 487-495, 2007. [9]N. M. Hansen, X. Ye, B. J. Grube, and A. E. Giuliano, "Manipulation of the primary breast tumor and the incidence of sentinel node metastases from invasive breast cancer," Archives of Surgery, vol. 139, p. 634, 2004. [10]E. İ. Altınoğlu and J. H. Adair, "Near infrared imaging with nanoparticles," Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, pp. 461-477, 2010. [11]K. Licha, B. Riefke, V. Ntziachristos, A. Becker, B. Chance, and W. Semmler, "Hydrophilic Cyanine Dyes as Contrast Agents for Near‐infrared Tumor Imaging: Synthesis, Photophysical Properties and Spectroscopic In vivo Characterization¶," Photochemistry and Photobiology, vol. 72, pp. 392-398, 2000. [12]C. Perlitz, K. Licha, F. D. Scholle, B. Ebert, M. Bahner, P. Hauff, K. T. Moesta, and M. Schirner, "Comparison of two tricarbocyanine-based dyes for fluorescence optical imaging," Journal of fluorescence, vol. 15, pp. 443-454, 2005. [13]T. Fischer, I. Gemeinhardt, S. Wagner, D. Stieglitz, J. Schnorr, K. G. A. Hermann, B. Ebert, D. Petzelt, R. MacDonald, and K. Licha, "Assessment of unspecific near-infrared dyes in laser-induced fluorescence imaging of experimental arthritis," Academic radiology, vol. 13, pp. 4-13, 2006. [14]E. Tanaka, S. Ohnishi, R. G. Laurence, H. S. Choi, V. Humblet, and J. V. Frangioni, "Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence," The Journal of urology, vol. 178, pp. 2197-2202, 2007. [15]Y. Yanagi, Y. Tamaki, and H. Sekine, "Fluorescein angiography-guided indocyanine green angiography for the detection of feeder vessels in subfoveal choroidal neovascularization," Eye, vol. 18, pp. 474-477, 2004. [16]M. Ferencz, G. M. Somfai, A. Farkas, I. Kovacs, B. Lesch, Z. Recsan, J. Nemes, and G. Salacz, "Functional assessment of the possible toxicity of indocyanine green dye in macular hole surgery," American Journal of Ophthalmology, vol. 142, pp. 765-770. e1, 2006. [17]J. Li, Z. G. Lan, M. He, and C. You, "Assessment of microscope-integrated indocyanine green angiography during intracranial aneurysm surgery: A retrospective study of 120 patients," Neurology India, vol. 57, p. 453, 2009. [18]V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," Proceedings of the National Academy of Sciences, vol. 97, p. 2767, 2000. [19]A. Poellinger, S. Burock, D. Grosenick, A. Hagen, L. Ludemann, F. Diekmann, F. Engelken, R. Macdonald, H. Rinneberg, and P. M. Schlag, "Breast cancer: early-and late-fluorescence near-infrared imaging with indocyanine green—a preliminary study," Radiology, vol. 258, pp. 409-416, 2011. [20]顏宗賢, "小鼠移植模型中乳癌的活體螢光影像: 與高解析超音波之比較," 中興大學生醫工程研究所學位論文, 2011. [21]E. D. Agdeppa and M. E. Spilker, "A review of imaging agent development," The AAPS journal, vol. 11, pp. 286-299, 2009. [22]J. K. Willmann, N. Van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, "Molecular imaging in drug development," Nature Reviews Drug Discovery, vol. 7, pp. 591-607, 2008. [23]A. Perrone, L. L. Mele, S. Sassi, M. Marini, L. Testaverde, and L. Izzo, "MDCT of the breast," American Journal of Roentgenology, vol. 190, pp. 1644-1651, 2008. [24]K. K. Lindfors, J. M. Boone, T. R. Nelson, K. Yang, A. L. C. Kwan, and D. W. F. Miller, "Dedicated Breast CT: Initial Clinical Experience1," Radiology, vol. 246, pp. 725-733, 2008. [25]W. T. Yang, S. Carkaci, L. Chen, C. J. Lai, A. Sahin, G. J. Whitman, and C. C. Shaw, "Dedicated cone-beam breast CT: feasibility study with surgical mastectomy specimens," American Journal of Roentgenology, vol. 189, pp. 1312-1315, 2007. [26]C. K. Kuhl, P. Mielcareck, S. Klaschik, C. Leutner, E. Wardelmann, J. Gieseke, and H. H. Schild, "Dynamic Breast MR Imaging: Are Signal Intensity Time Course Data Useful for Differential Diagnosis of Enhancing Lesions? 1," Radiology, vol. 211, pp. 101-110, 1999. [27]P. Armitage, C. Behrenbruch, M. Brady, and N. Moore, "Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast," Medical image analysis, vol. 9, pp. 315-329, 2005. [28] M. Guray and A. A. Sahin, "Benign breast diseases: classification, diagnosis, and management," The Oncologist, vol. 11, pp. 435-449, 2006. [29]M. H. Seltzer, "Breast complaints, biopsies, and cancer correlated with age in 10,000 consecutive new surgical referrals," The breast journal, vol. 10, pp. 111-117, 2004. [30]J. E. Celis, P. Gromov, J. M. A. Moreira, T. Cabezon, E. Friis, I. M. M. Vejborg, G. Proess, F. Rank, and I. Gromova, "Apocrine Cysts of the Breast," Molecular & Cellular Proteomics, vol. 5, pp. 462-483, 2006. [31]S. E. Singletary and J. L. Connolly, "Breast cancer staging: working with the sixth edition of the AJCC Cancer Staging Manual," CA: a cancer journal for clinicians, vol. 56, pp. 37-47, 2006. [32]M. Dias, S. Cabrita, E. Sousa, B. Franca, J. Patricio, and C. Oliveira, "Benign and malignant mammary tumors induced by DMBA in female Wistar rats," Eur J Gynaecol Oncol, vol. 20, pp. 285-8, 1999. [33]B. R. Davies, A. M. Platt-Higgins, G. Schmidt, and P. S. Rudland, "Development of Hyperplasias, Preneoplasias, and Mammary Tumors in MMTV-c-erbB-2 and MMTV-TGFα Transgenic Rats," The American journal of pathology, vol. 155, pp. 303-314, 1999. [34]B. Drexler, J. Davis, and G. Schofield, "Diaphanography in the diagnosis of breast cancer," Radiology, vol. 157, pp. 41-44, 1985. [35]B. Ohlsson, J. Gundersen, and D. M. Nilsson, "Diaphanography: a method for evaluation of the female breast," World Journal of Surgery, vol. 4, pp. 701-705, 1980. [36]D. Hanahan, "Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis," cell, vol. 86, pp. 353-364, 1996. [37]P. Carmeliet and R. K. Jain, "Angiogenesis in cancer and other diseases," Nature, vol. 407, pp. 249-257, 2000. [38]G. Bergers and L. E. Benjamin, "Tumorigenesis and the angiogenic switch," Nature Reviews Cancer, vol. 3, pp. 401-410, 2003. [39]G. J. Doherty and H. T. McMahon, "Mechanisms of endocytosis," Annual review of biochemistry, vol. 78, pp. 857-902, 2009. [40]E. D. Gundelfinger, M. M. Kessels, and B. Qualmann, "Temporal and spatial coordination of exocytosis and endocytosis," Nature Reviews Molecular Cell Biology, vol. 4, pp. 127-139, 2003. [41]M. Ferencz, G. M. Somfai, A. Farkas, I. Kovacs, B. Lesch, Z. Recsan, J. Nemes, and G. Salacz, "Functional Assessment of the Possible Toxicity of Indocyanine Green Dye in Macular Hole Surgery," American Journal of Ophthalmology, vol. 142, pp. 765-770.e1, 2006. [42]B. Pyrzynska, I. Pilecka, and M. Miaczynska, "Endocytic proteins in the regulation of nuclear signaling, transcription and tumorigenesis," Molecular oncology, vol. 3, pp. 321-338, 2009. [43]E. J. New, A. Congreve, and D. Parker, "Definition of the uptake mechanism and sub-cellular localisation profile of emissive lanthanide complexes as cellular optical probes," Chemical Science, vol. 1, pp. 111-118, 2010.
摘要: 
本研究目標分為三大方向:首先要確認一移植瘤(xenograft)動物模型對臨床
良、惡性腫瘤的代表性;其次是要探討以diglucosamid-SIDAG 進行活體螢光顯
影,於該裸鼠模型中呈現良、惡性腫瘤邊界與大小的方式;第三部分則探索以
diglucosamid-SIDAG 活體螢光顯影區分良、惡性腫瘤顯影對比的機制。
該動物模式的良性移植瘤有近似臨床纖維腺瘤的特徵,活體內外觀無新生血
管,病理切片呈現高蛋白質纖維組成、實心具裂孔,超音波影像呈現受皮膚組織
擠壓扁平狀,電腦斷層掃描動態顯影測得較低的顯影劑滲透數值和不明顯的顯影
劑清除趨勢;惡性移植瘤的活體內外觀具新生血管,病理切片呈現細胞多形性和
有絲分裂等癌組織特質,超音波影像檢測呈現非層狀、非均質核心、不規則邊界,電腦斷層掃描動態顯影呈現較高的顯影劑滲透數值和較快的顯影劑清除速率。
其次,以超音波影像結果校正螢光影像閥值,兩個系統所測得的腫瘤長度大
小誤差值符合臨床影像容許的範圍。良性腫瘤螢光影像判斷的長度比超音波影像
判斷的長度長2.62×10-2 公分,偏差範圍±6.02×10-1 公分;惡性腫瘤螢光影像判斷的長度比超音波影像判斷的長度短0.05 公分,偏差範圍±2.27×10-1 公分。
最後在diglucosamid-SIDAG 的細胞階層吸收實驗中,經流氏細胞儀判讀得知,MCF-7細胞於作用1-8 小時之間,螢光物進入細胞的數量隨作用時間延長而增加,與裸鼠模型惡性植入物的螢光顯影趨勢雷同。

The aims of the research included three directions: verification of a nude mice xenograft model in representing both the clinical benign and malignant breast lesions, characterization of applying the diglucosamid-SIDAG contrasted imaging in delineation of lesion boundary with the nude mice xenograft model, and investigation of the mechanism for lesion malignancy screening the diglucosamid-SIDAG contrasted imaging.
The benign xenograft in the animal model resembled fibroadenoma with no evident neovascularization in vivo, high protein fibrosis with solid core and cleft structure in histological analysis, larger transverse diameter (parallel to the skin layers) than vertical diameter and central homogeneity under sonogram, and lower permeability and no noticeable clearance pattern of contrast agent in dynamic computer tomography scan. The malignant xenograft appeared with visible neovascularization in vivo, cell polymorphism and mitosis in histological analysis, greater vertical diameter (penetrating the architecture of skin layers) and ill-defined boundary under sonogram, and higher permeability and evident clearance pattern of contrast agent in dynamic computer tomography scan.
The accuracy of agreement analysis showed clinically acceptable bias of longitudinal axis length of lesion assessment between sonogram and calibrated fluorescence contrasted imaging. The in vitro cell lines study indicated that the preferential cellular uptake of the fluorophore in MCF-7 cell could be responsible for the “delayed wash-out phenomenon”.
URI: http://hdl.handle.net/11455/3956
其他識別: U0005-0608201216050400
Appears in Collections:生醫工程研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.