Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3959
標題: 可控釋放型之多孔性PLGA/Glatin支架釋放平台誘導小鼠胚胎幹細胞成血管內皮細胞之研究
The Investigation of Porous PLGA Scaffolds Controlled Release System for Inducing Mouse Embryonic Stem Cells to Vascular Endothelial Cells
作者: 潘威廷
Pan, Wei-Ting
關鍵字: 多孔PLGA釋放控制支架;Control release scaffold of porous PLGA;小鼠胚胎幹細胞;血管內皮細胞;條件培養液;控制釋放;Mouse embryonic stem cell;Endothelial cell;Conditioned medium;Control release
出版社: 生醫工程研究所
引用: [1] A. Callegari, S. Bollini, L. Iop, A. Chiavegato, G. Torregrossa, M. Pozzobon, G. Gerosa, P. De Coppi, N. Elvassore, and S. Sartore, “Neovascularization induced by porous collagen scaffold implanted on intact and cryoinjured rat hearts,” Biomaterials, vol. 28, no. 36, pp. 5449-5461, 2007. [2] C. Wu, Y. Zhang, Y. Zhou, W. Fan, and Y. Xiao, “A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: Physiochemistry and in vivo osteogenesis,” Acta Biomaterialia, vol. 7, no. 5, pp. 2229-2236, 2011. [3] X. Liu, M. N. Rahaman, and Q. Fu, “Bone regeneration in strong porous bioactive glass scaffolds with an oriented microstructure implanted in rat calvarial defects,” Acta Biomaterialia, vol. 9, no. 1, pp. 4889-4898, 2013. [4] 李宜書, “淺談組織工程,” 物理雙月刊, vol. 24, no. 3, pp. 430-435, 2001. [5] L. M. Buja, and D. Vela, “Immunologic and Inflammatory Reactions to Exogenous Stem Cells: Implications for Experimental Studies and Clinical Trials for Myocardial Repair,” Journal of the American College of Cardiology, vol. 56, no. 21, pp. 1693-1700, 2010. [6] F. Sun, K. Zhou, W.-j. Mi, and J.-h. Qiu, “Repair of facial nerve defects with decellularized artery allografts containing autologous adipose-derived stem cells in a rat model,” Neuroscience Letters, vol. 499, no. 2, pp. 104-108, 2011. [7] X. Wu, L. Huang, Q. Zhou, Y. Song, A. Li, J. Jin, and B. Cui, “Mesenchymal stem cells participating in ex vivo endothelium repair and its effect on vascular smooth muscle cells growth,” International Journal of Cardiology, vol. 105, no. 3, pp. 274-282, 2005. [8] V. L. T. Ballard, and J. M. Edelberg, “Stem cells for cardiovascular repair — The challenges of the aging heart,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 4, pp. 582-592, 2008. [9] R. Villegas, G. M. Villegas, M. Longart, M. Hernandez, B. Maqueira, A. Buonanno, R. Garcı́a, and C. Castillo, “Neuregulin found in cultured-sciatic nerve conditioned medium causes neuronal differentiation of PC12 cells,” Brain Research, vol. 852, no. 2, pp. 305-318, 2000. [10] V. Bordoni, T. Alonzi, L. Zanetta, D. Khouri, A. Conti, M. Corazzari, F. Bertolini, P. Antoniotti, G. Pisani, F. Tognoli, E. Dejana, and M. Tripodi, “Hepatocyte-conditioned medium sustains endothelial differentiation of human hematopoietic-endothelial progenitors,” Hepatology, vol. 45, no. 5, pp. 1218-1228, 2007. [11] M. GanjiBakhsh, V. Nejati, N. Delirezh, M. Asadi, and K. Gholami, “Mixture of fibroblast, epithelial and endothelial cells conditioned media induce monocyte-derived dendritic cell maturation,” Cellular Immunology, vol. 272, no. 1, pp. 18-24, 2011. [12] C. Korecki, J. Taboas, R. Tuan, and J. Iatridis, “Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype,” Stem Cell Research & Therapy, vol. 1, no. 2, pp. 1-8, 2010. [13] S. H. Park, K. W. Kim, Y. S. Chun, and J. C. Kim, “Human mesenchymal stem cells differentiate into keratocyte-like cells in keratocyte-conditioned medium,” Experimental Eye Research, vol. 101, no. 0, pp. 16-26, 2012. [14] A. Kitazawa, and N. Shimizu, “Differentiation of mouse embryonic stem cells into neurons using conditioned medium of dorsal root ganglia,” Journal of Bioscience and Bioengineering, vol. 100, no. 1, pp. 94-99, 2005. [15] X. Ren, J. Zhang, X. Gong, X. Niu, X. Zhang, P. Chen, and X. Zhang, “Differentiation of murine embryonic stem cells toward renal lineages by conditioned medium from ureteric bud cells in vitro,” Acta Biochimica et Biophysica Sinica, vol. 42, no. 7, pp. 464-471, 2010. [16] L. C. Xuan Sun, Guangxiu Lu, “Conditioned medium of endothelial cells promotes the endothelial and hematopoietic differentiation of embryonic stem cells,” Cell Research, vol. 18, no. S1, 2008. [17] E. D. O''Cearbhaill, M. A. Punchard, M. Murphy, F. P. Barry, P. E. McHugh, and V. Barron, “Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate,” Biomaterials, vol. 29, no. 11, pp. 1610-1619, 2008. [18] K. Kurpinski, J. Chu, C. Hashi, and S. Li, “Anisotropic mechanosensing by mesenchymal stem cells,” Proceedings of the National Academy of Sciences, vol. 103, no. 44, pp. 16095-16100, 2006. [19] R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, “Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment,” Developmental Cell, vol. 6, no. 4, pp. 483-495, 2004. [20] M. R. Lee, K. W. Kwon, H. Jung, H. N. Kim, K. Y. Suh, K. Kim, and K.-S. Kim, “Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays,” Biomaterials, vol. 31, no. 15, pp. 4360-4366, 2010. [21] X. Xin, M. Hussain, and J. J. Mao, “Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold,” Biomaterials, vol. 28, no. 2, pp. 316-325, 2007. [22] C. K. Hashi, Y. Zhu, G.-Y. Yang, W. L. Young, B. S. Hsiao, K. Wang, B. Chu, and S. Li, “Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts,” Proceedings of the National Academy of Sciences, vol. 104, no. 29, pp. 11915-11920, 2007. [23] N. G. Matthew J. Dalby, Rahul Tare, Abhay Andar, Mathis O. Riehle, Pawel Herzyk, Chris D. W. Wilkinson, Richard O. C. Oreffo, “The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder,” nature materials, vol. 6, no. 12, pp. 997-1003, 2007. [24] M. Schuldiner, O. Yanuka, J. Itskovitz-Eldor, D. A. Melton, and N. Benvenisty, “Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells,” Proceedings of the National Academy of Sciences, vol. 97, no. 21, pp. 11307-11312, 2000. [25] P. C. R Cancedda, F D Cancedda, B Dozin and R Quarto, “Developmental control of chondrogenesis and osteogenesis,” Int. J. Dev. Biol., vol. 44, pp. 707-714, 2000. [26] M. B. Goldring, K. Tsuchimochi, and K. Ijiri, “The control of chondrogenesis,” Journal of Cellular Biochemistry, vol. 97, no. 1, pp. 33-44, 2006. [27] Y.-C. Huang, D. Kaigler, K. G. Rice, P. H. Krebsbach, and D. J. Mooney, “Combined Angiogenic and Osteogenic Factor Delivery Enhances Bone Marrow Stromal Cell-Driven Bone Regeneration,” Journal of Bone and Mineral Research, vol. 20, no. 5, pp. 848-857, 2005. [28] V. B. Nitin Dixit, Sanjula Baboota, Alka Ahuja and Javed Ali “Iontophoresis - An Approach for Controlled Drug Delivery: A Review,” Current Drug Delivery, vol. 4, no. 1, pp. 1-10, 2007. [29] G. N. Riccardo Bellazzi, Claudio Cobelli, “The subcutaneous route to insulin dependent diabetes therapy,” IEEE Engineering in Medicine and Biology Society, vol. 20, no. 1, pp. Riccardo Bellazzi1, Gianluca Nucci2, Claudio Cobelli2, 2001. [30] C.-J. Kim, “A linear drug release from erosion-controlled drug/resin complex systems,” Journal of Applied Polymer Science, vol. 54, no. 8, pp. 1179-1183, 1994. [31] A. A. Barba, M. d’Amore, S. Chirico, G. Lamberti, and G. Titomanlio, “Swelling of cellulose derivative (HPMC) matrix systems for drug delivery,” Carbohydrate Polymers, vol. 78, no. 3, pp. 469-474, 2009. [32] J. K. Sherwood, S. L. Riley, R. Palazzolo, S. C. Brown, D. C. Monkhouse, M. Coates, L. G. Griffith, L. K. Landeen, and A. Ratcliffe, “A three-dimensional osteochondral composite scaffold for articular cartilage repair,” Biomaterials, vol. 23, no. 24, pp. 4739-4751, 2002. [33] D. J. Mooney, D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer, “Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents,” Biomaterials, vol. 17, no. 14, pp. 1417-1422, 1996. [34] F. J. Hua, T. G. Park, and D. S. Lee, “A facile preparation of highly interconnected macroporous poly(d,l-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid–liquid phase separation of a PLGA–dioxane–water ternary system,” Polymer, vol. 44, no. 6, pp. 1911-1920, 2003. [35] K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer, vol. 36, no. 4, pp. 837-842, 1995. [36] Q. Hou, D. W. Grijpma, and J. Feijen, “Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique,” Biomaterials, vol. 24, no. 11, pp. 1937-1947, 2003. [37] S. B. Lee, Y. H. Kim, M. S. Chong, S. H. Hong, and Y. M. Lee, “Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method,” Biomaterials, vol. 26, no. 14, pp. 1961-1968, 2005. [38] A. G. Mikos, A. J. Thorsen, L. A. Czerwonka, Y. Bao, R. Langer, D. N. Winslow, and J. P. Vacanti, “Preparation and characterization of poly(l-lactic acid) foams,” Polymer, vol. 35, no. 5, pp. 1068-1077, 1994. [39] E. Wenk, A. J. Meinel, S. Wildy, H. P. Merkle, and L. Meinel, “Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering,” Biomaterials, vol. 30, no. 13, pp. 2571-2581, 2009. [40] J. S. Mao, L. G. Zhao, Y. J. Yin, and K. D. Yao, “Structure and properties of bilayer chitosan–gelatin scaffolds,” Biomaterials, vol. 24, no. 6, pp. 1067-1074, 2003. [41] C.-C. Wang, K.-C. Yang, K.-H. Lin, H.-C. Liu, and F.-H. Lin, “A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology,” Biomaterials, vol. 32, no. 29, pp. 7118-7126, 2011. [42] C. S. Tan, A. Jejurikar, B. Rai, T. Bostrom, G. Lawrie, and L. Grondahl, “Encapsulation of a glycosaminoglycan in hydroxyapatite/alginate capsules,” Journal of Biomedical Materials Research Part A, vol. 91A, no. 3, pp. 866-877, 2009. [43] J. C. Becker, M. Beckbauer, W. Domschke, H. Herbst, and T. Pohle, “Fibrin glue, healing of gastric mucosal injury, and expression of growth factors: results from a human in vivo study,” Gastrointestinal Endoscopy, vol. 61, no. 4, pp. 560-567, 2005. [44] E. Y. Teo, S.-Y. Ong, M. S. Khoon Chong, Z. Zhang, J. Lu, S. Moochhala, B. Ho, and S.-H. Teoh, “Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds,” Biomaterials, vol. 32, no. 1, pp. 279-287, 2011. [45] A. Gopferich, “Mechanisms of polymer degradation and erosion,” Biomaterials, vol. 17, no. 2, pp. 103-114, 1996. [46] J. M. Anderson, and M. S. Shive, “Biodegradation and biocompatibility of PLA and PLGA microspheres,” Advanced Drug Delivery Reviews, vol. 28, no. 1, pp. 5-24, 1997. [47] C. Erggelet, K. Neumann, M. Endres, K. Haberstroh, M. Sittinger, and C. Kaps, “Regeneration of ovine articular cartilage defects by cell-free polymer-based implants,” Biomaterials, vol. 28, no. 36, pp. 5570-5580, 2007. [48] A. N. Ford Versypt, D. W. Pack, and R. D. Braatz, “Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres — A review,” Journal of Controlled Release, vol. 165, no. 1, pp. 29-37, 2013. [49] S. J. Kim, D. H. Jang, W. H. Park, and B.-M. Min, “Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds,” Polymer, vol. 51, no. 6, pp. 1320-1327, 2010. [50] M. A. Pattison, S. Wurster, T. J. Webster, and K. M. Haberstroh, “Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications,” Biomaterials, vol. 26, no. 15, pp. 2491-2500, 2005. [51] K. Saeki, Y. Yogiashi, M. Nakahara, N. Nakamura, S. Matsuyama, A. Koyanagi, H. Yagita, M. Koyanagi, Y. Kondo, and A. Yuo, “Highly efficient and feeder-free production of subculturable vascular endothelial cells from primate embryonic stem cells,” Journal of Cellular Physiology, vol. 217, no. 1, pp. 261-280, 2008. [52] K. Kawasaki, T. Watabe, H. Sase, M. Hirashima, H. Koide, Y. Morishita, K. Yuki, T. Sasaoka, T. Suda, M. Katsuki, K. Miyazono, and K. Miyazawa, “Ras signaling directs endothelial specification of VEGFR2+ vascular progenitor cells,” The Journal of Cell Biology, vol. 181, no. 1, pp. 131-141, 2008. [53] T. Cimato, J. Beers, S. Ding, M. Ma, J. P. McCoy, M. Boehm, and E. G. Nabel, “Neuropilin-1 Identifies Endothelial Precursors in Human and Murine Embryonic Stem Cells Before CD34 Expression,” Circulation, vol. 119, no. 16, pp. 2170-2178, 2009. [54] M. Sone, H. Itoh, J. Yamashita, T. Yurugi-Kobayashi, Y. Suzuki, Y. Kondo, A. Nonoguchi, N. Sawada, K. Yamahara, K. Miyashita, K. Park, M. Shibuya, S. Nito, S.-I. Nishikawa, and K. Nakao, “Different Differentiation Kinetics of Vascular Progenitor Cells in Primate and Mouse Embryonic Stem Cells,” Circulation, vol. 107, no. 16, pp. 2085-2088, 2003.
摘要: 
組織工程支架為細胞生長及代謝的場所,以便細胞能於支架上進行貼附、新陳代謝、分化等功能,等於是人造器官研究發展的基礎,如能以胚胎幹細胞結合組織工程支架與誘導分化過程,則將有更良好之分裂、生長及分化能力。
本研究利用以生物相容性材料PLGA與丙酮形成4種不同重量百分比(w/w) 1:3、1:4、1:5、1:6之溶液比例,加上2種之鹽顆粒之粒徑分別為13.6±2.8 μm與404.4±20.6 μm並以鹽析法製備出8種含水率相異之多孔PLGA支架,再於支架中包覆血管內皮細胞培養液以誘導小鼠胚胎幹細胞分化。因不同支架對水的通透性不同進而影響控制釋放速率。其中1:3 Porous I與1:6 Porous II PLGA支架,分別是含水率最小與最大之支架結構,含水率差異高達213%。1:3 Porous I支架對包含於內皮細胞條件培養液中之生長因子VEGF之控制釋放速度為1:6 Porous II支架之2倍。西方墨點法與ELISA之分析結果亦驗證小鼠胚胎幹細胞開始分化成血管內皮細胞之時間點亦與控制釋放速率之差異相符。當小鼠胚胎幹細胞開始分化時,支架之VEGF濃度僅是0.06±0.01-0.14±0.03 ng/mL,相較於現有文獻之20-50 ng/mL,本研究之方法可減少大量之VEGF之使用。且不須隨時間之增加再添加生長因子,而誘導時間亦可縮短1/2,再藉由不同支架之設計可精確控制幹細胞分化之時間點。

The key issues involved in tissue engineering are how to culture specific cells on a suitable scaffold and to provide satisfactory growth factors to regulate the differentiation and proliferation of the cultured cells. Scaffolds function as the base for cell adhesion and migration, the place for the exchange of nutrients, and to deliver and retain cells and biochemical factors. Embryonic stem cell possesses the characteristics of cellular differentiation and self-renewing, being able to differentiate to various tissue. A specifically designed scaffold can enhance the division, proliferation, and differentiation of embryonic stem cell.
In this study, first four different mixing solutions of biocompatible material PLGA and acetone with weight percentage (w/w) ratio of 1:3, 1:4, 1:5, 1:6 were prepared. The prepared solutions were than combined with salt particles of two different particle sizes (13.6�2.8 m (Porous I) and 404.4�20.6 m (Porous II)), respectively, to form eight different types of porous scaffold with various moisture contents. The porous scaffolds were then filled with vascular endothelial cell conditioned medium (ECCM) as control release scaffolds to induce the differentiation of mouse embryonic stem cell to endothelial cell. It was measured that the (1:3)/(Porous I) and (1:6)/(Porous II) scaffolds are the minimum and the maximum moisture containing scaffolds, respectively. The moisture content difference between these two types of scaffold was measured to be 213%. The control release rate of the VEGF contained in the ECCM that was embedded in the (1:3)/(Porous I) scaffolds was measured to be twice of that of the (1:6)/(Porous II) scaffolds. The starting differentiation time points of the mouse embryonic stem cell to endothelial cell in these two types of scaffold observed through Western blot and ELISA analysis are consistent with the VEGF releasing results. The VEGF concentration in the proposed control release scaffolds was measured to be from 0.06�0.01 to 0.14�0.03 ng/mL. Our control release scaffolds consumed much less amount of VEGF when compared to the reported studied that used 20 to 50 ng/mL VEFG daily to induce the differentiation of mouse embryonic stem cell. Furthermore, the starting differentiation time point of mouse embryonic stem cell in the proposed control release scaffolds can be reduced to 1/2 of that of the conventional approaches.
URI: http://hdl.handle.net/11455/3959
其他識別: U0005-2207201320031900
Appears in Collections:生醫工程研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.