Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3960
標題: 可攜式塑膠基底免疫分析元件
Portable Thermoplastic Device for ELISA Applications
作者: 周昕澔
Chou, Hsin-Hao
關鍵字: 熱塑性塑膠;Thermoplastic;免疫分析;微流體元件;ELISA;Microfluidics device
出版社: 生醫工程研究所
引用: [1] P. Yager, G. J. Domingo, and J. Gerdes, "Point-of-care diagnostics for global health," Annu Rev Biomed Eng, vol. 10, pp. 107-44, 2008. [2] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, pp. 412-8, Jul 27 2006. [3] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications," Chemical Society Reviews, vol. 39, pp. 1153-1182, 2010. [4] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992/09/01 1992. [5] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990. [6] C. D. Chin, V. Linder, and S. K. Sia, "Lab-on-a-chip devices for global health: Past studies and future opportunities," Lab on a Chip, vol. 7, pp. 41-57, 2007. [7] B. H. Weigl, R. L. Bardell, and C. R. Cabrera, "Lab-on-a-chip for drug development," Advanced Drug Delivery Reviews, vol. 55, pp. 349-377, 2003. [8] P. A. Singer, A. D. Taylor, A. S. Daar, R. E. G. Upshur, J. A. Singh, and J. V. Lavery, "Grand Challenges in Global Health: The Ethical, Social and Cultural Program," PLoS Med, vol. 4, p. e265, 2007. [9] J. S. Rossier and H. H. Girault, "Enzyme linked immunosorbent assay on a microchip with electrochemical detection," Lab on a Chip, vol. 1, pp. 153-157, 2001. [10] S. Shoji, M. Esashi, and T. Matsuo, "Fabrication of an integrated microprobing head for fault analysis of mos integrated circuits," Sensors and Actuators, vol. 14, pp. 125-132, 1988. [11] H. T. G. van Lintel, F. C. M. van De Pol, and S. Bouwstra, "A piezoelectric micropump based on micromachining of silicon," Sensors and Actuators, vol. 15, pp. 153-167, 1988. [12] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, "A bidirectional silicon micropump," Sensors and Actuators A: Physical, vol. 50, pp. 81-86, 1995. [13] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of Plastic Microfluid Channels by Imprinting Methods," Analytical Chemistry, vol. 69, pp. 4783-4789, 1997/12/01 1997. [14] J. Xu, L. Locascio, M. Gaitan, and C. S. Lee, "Room-Temperature Imprinting Method for Plastic Microchannel Fabrication," Analytical Chemistry, vol. 72, pp. 1930-1933, 2000/04/01 2000. [15] R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, and H. H. Hooper, "Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates," Analytical Chemistry, vol. 69, pp. 2626-2630, 1997/07/01 1997. [16] S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmuller, K. F. Weibezahn, and A. Welle, "3D tissue culture substrates produced by microthermoforming of pre-processed polymer films," Biomedical Microdevices, vol. 8, pp. 191-199, 2006/09/01 2006. [17] C.-W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2008. [18] J. N. Lee, C. Park, and G. M. Whitesides, "Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices," Analytical Chemistry, vol. 75, pp. 6544-6554, 2003/12/01 2003. [19] M. A. Unger, "Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography," Science, vol. 288, pp. 113-116, 2000. [20] W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama, "Computerized microfluidic cell culture using elastomeric channels and Braille displays," Proc Natl Acad Sci U S A, vol. 101, pp. 15861-6, Nov 9 2004. [21] D. B. Weibel, M. Kruithof, S. Potenta, S. K. Sia, A. Lee, and G. M. Whitesides, "Torque-Actuated Valves for Microfluidics," Analytical Chemistry, vol. 77, pp. 4726-4733, 2005/08/01 2005. [22] S. O. Sundberg, C. T. Wittwer, C. Gao, and B. K. Gale, "Spinning Disk Platform for Microfluidic Digital Polymerase Chain Reaction," Analytical Chemistry, vol. 82, pp. 1546-1550, 2010/02/15 2010. [23] S. Lai, S. Wang, J. Luo, L. J. Lee, S.-T. Yang, and M. J. Madou, "Design of a Compact Disk-like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay," Analytical Chemistry, vol. 76, pp. 1832-1837, 2004/04/01 2004. [24] J. V. Zoval and M. J. Madou, "Centrifuge-based fluidic platforms," Proceedings of the IEEE, vol. 92, pp. 140-153, 2004. [25] A. T. Woolley, D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, and M. A. Northrup, "Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device," Analytical Chemistry, vol. 68, pp. 4081-4086, 1996/12/01 1996. [26] A. Manz, D. J. Harrison, E. M. J. Verpoorte, J. C. Fettinger, A. Paulus, H. Ludi, and H. M. Widmer, "Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip," Journal of Chromatography A, vol. 593, pp. 253-258, 1992. [27] J. Khandurina, T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey, "Integrated System for Rapid PCR-Based DNA Analysis in Microfluidic Devices," Analytical Chemistry, vol. 72, pp. 2995-3000, 2000/07/01 2000. [28] T. T. Michael, N. Peter, C. Jesus, and E. P. Kurt, "Simulation of microfluidic pumping in a genomic DNA blood-processing cassette," Journal of Micromechanics and Microengineering, vol. 13, p. 201, 2003. [29] J. G. Smits, "Piezoelectric micropump with three valves working peristaltically," Sensors and Actuators A: Physical, vol. 21, pp. 203-206, 1990. [30] S. C. Jakeway, A. J. de Mello, and E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius'' Journal of Analytical Chemistry, vol. 366, pp. 525-539, 2000/03/01 2000. [31] B. H. van der Schoot, S. Jeanneret, A. van den Berg, and N. F. de Rooij, "A silicon integrated miniature chemical analysis system," Sensors and Actuators B: Chemical, vol. 6, pp. 57-60, 1992. [32] R. A. Clark, P. B. Hietpas, and A. G. Ewing, "Electrochemical Analysis in Picoliter Microvials," Analytical Chemistry, vol. 69, pp. 259-263, 1997/01/01 1997. [33] A. L. Grosvenor, A. Feltus, R. C. Conover, S. Daunert, and K. W. Anderson, "Development of Binding Assays in Microfabricated Picoliter Vials:  An Assay for Biotin," Analytical Chemistry, vol. 72, pp. 2590-2594, 2000/06/01 2000. [34] P. C. H. Li and D. J. Harrison, "Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects," Analytical Chemistry, vol. 69, pp. 1564-1568, 1997/04/01 1997. [35] P. A. Limbach and Z. Meng, "Integrating micromachined devices with modern mass spectrometry," Analyst, vol. 127, pp. 693-700, 2002. [36] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on, vol. 26, pp. 1880-1886, 1979. [37] C. H. Mastrangelo, M. A. Burns, and D. T. Burke, "Microfabricated devices for genetic diagnostics," Proceedings of the IEEE, vol. 86, pp. 1769-1787, 1998. [38] W. Buchegger, C. Wagner, B. Lendl, M. Kraft, and M. Vellekoop, "A highly uniform lamination micromixer with wedge shaped inlet channels for time resolved infrared spectroscopy," Microfluidics and Nanofluidics, vol. 10, pp. 889-897, 2011/04/01 2011. [39] D. Moon and K. B. Migler, "Forced assembly and mixing of melts via planar polymer micro-mixing," Polymer, vol. 51, pp. 3147-3155, 2010. [40] R. T. Tsai and C. Y. Wu, "An efficient micromixer based on multidirectional vortices due to baffles and channel curvature," Biomicrofluidics, vol. 5, p. 14103, 2011. [41] A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, "Chaotic mixer for microchannels," Science, vol. 295, pp. 647-51, Jan 25 2002. [42] D. S. Kim, S. H. Lee, C. H. Ahn, J. Y. Lee, and T. H. Kwon, "Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding," Lab on a Chip, vol. 6, pp. 794-802, 2006. [43] E. Engvall and P. Perlmann, "Enzyme-Linked Immunosorbent Assay, Elisa: III. Quantitation of Specific Antibodies by Enzyme-Labeled Anti-Immunoglobulin in Antigen-Coated Tubes," The Journal of Immunology, vol. 109, pp. 129-135, July 1, 1972 1972. [44] A. H. Ng, U. Uddayasankar, and A. R. Wheeler, "Immunoassays in microfluidic systems," Anal Bioanal Chem, vol. 397, pp. 991-1007, Jun 2010. [45] A. Bange, H. B. Halsall, and W. R. Heineman, "Microfluidic immunosensor systems," Biosensors and Bioelectronics, vol. 20, pp. 2488-2503, 2005. [46] L. J. Lee, S. T. Yang, S. Lai, Y. Bai, W. C. Huang, and Y. J. Juang, "Microfluidic Enzyme‐Linked Immunosorbent Assay Technology," in Advances in Clinical Chemistry. vol. Volume 42, S. M. Gregory, Ed., ed: Elsevier, 2006, pp. 255-295. [47] S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies," ELECTROPHORESIS, vol. 24, pp. 3563-3576, 2003. [48] Q. Xiang, G. Hu, Y. Gao, and D. Li, "Miniaturized immunoassay microfluidic system with electrokinetic control," Biosensors and Bioelectronics, vol. 21, pp. 2006-2009, 2006. [49] J. Yakovleva, R. Davidsson, A. Lobanova, M. Bengtsson, S. Eremin, T. Laurell, and J. Emneus, "Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection," Analytical Chemistry, vol. 74, pp. 2994-3004, 2002/07/01 2002. [50] H. Miyaguchi, H. Takahashi, T. Ohashi, K. Mawatari, Y. T. Iwata, H. Inoue, and T. Kitamori, "Rapid analysis of methamphetamine in hair by micropulverized extraction and microchip-based competitive ELISA," Forensic Science International, vol. 184, pp. 1-5, 2009. [51] H. Huang, X. Zheng, J. Zheng, J. Pan, and X. Pu, "Rapid analysis of alpha-fetoprotein by chemiluminescence microfluidic immunoassay system based on super-paramagnetic microbeads," Biomedical Microdevices, vol. 11, pp. 213-216, 2009/02/01 2009. [52] S. B. Cheng, C. D. Skinner, J. Taylor, S. Attiya, W. E. Lee, G. Picelli, and D. J. Harrison, "Development of a Multichannel Microfluidic Analysis System Employing Affinity Capillary Electrophoresis for Immunoassay," Analytical Chemistry, vol. 73, pp. 1472-1479, 2001/04/01 2001. [53] J. R. Vig, "UV/ozone cleaning of surfaces," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 3, pp. 1027-1034, 1985. [54] T. H. Weller and A. H. Coons, "Fluorescent antibody studies with agents of varicella and herpes zoster propagated in vitro," Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), vol. 86, pp. 789-794, 1954. [55] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, "Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment," Lab on a Chip, vol. 7, pp. 499-505, 2007.
摘要: 
本研究將整合多項元件於微流體系統中,如手動螺絲幫浦、一次性壓力驅動
閥、微型混合器、微型過濾器應用於血型檢定與酵素免疫分析。首先,手動螺絲
幫浦是利用市售螺絲產生壓力驅動微流道內部液體。一次性壓力驅動閥主要使用
紫外線照射在熱塑性塑膠基才表面進行簡單表面改質,並以此方式產生微米級狹
窄微流道與不同接合強度分別應用於細胞過濾器與儲存溶液。本研究在微流體系
統中整合混沌流微型混合器提高 40% 混合效率與多孔式整體式聚合物提供大量
表面基使檢測效率比單純微流道提高 8 倍,實現微流體系統應用於血型檢測與酵
素免疫分析。本研究所提出檢測平台可提供高靈敏度、高專一性、操作簡單、快
速與健全等潛力,並且不須任何外部儀器即可提供使用者進行可信的診斷應用。

A multiplex microfluidic platform comprising manual screw pump, burst valve,
micromixer, and microfilter have been developed for blood typing and immunoassay
applications. First, commercial available screws are used for providing pressure to
priming the fluids. In addition, a simple surface modification on polymer surface by UV
irradiation is adopted to create gap with the size of microns and bonding strength
variance within chips for cell filtration and solution storage, respectively. Following the
integration of chaotic micromixers and porous monoliths in the flow networks can
increase mixing efficiency 40% also increase detection efficiency 8 times by provide
more surface area, respectively.Achieveblood typing and immunoassay onmicrofluidic
platform. We believe the proposed platform possesses the potential for affordable,
sensitive, specific, user-friendly, rapid and robust, equipment free and deliverable to
end-users (ASSURED) diagnostic applications
URI: http://hdl.handle.net/11455/3960
其他識別: U0005-1608201320540800
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.