Please use this identifier to cite or link to this item:
標題: 生物功能性磁性奈米粒子團簇在旋轉磁場下之磁場相依性之運動行為
Field-dependent motion of bio-functionalized magnetic nanoparticle clusters under rotating magnetic fields
作者: 陳郁璇
Chen, Yu-Hsuan
關鍵字: 奈米粒子團簇;Nanoparticle cluster;旋轉磁場;磁場相依相圖;rotating magnetic fields;field-dependent phase diagram
出版社: 生醫工程研究所
引用: [1] W. C Elmore (1938). Ferromagnetic Colloid for Studying Magnetic Structures. Physical Review 54(4): 309-310 [2] S. S. Papell (1965). Manufacture of Magnetofluids. U. S. Patent, No.3215527,. [3] C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, and V.L. Colvinl (2006). Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals. SCIENCE, 10 NOVEMBER ,VOL 314, 964-967. [4] C.L. Chun, and J.W. Park (2001). Oil Spill Remediation Using Magnetic Separation. Journal of Environmental Engineering, Vol. 127, No. 5, May, pp. 443-449 [5] K.Y. Lien, J.L. Lin, C.Y. Liu, H.Y. Lei and G.B. Lee (2007). Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. The Royal Society of Chemistry ,10.1039/b700516d [6] M. Takayasu, D.R. Kelland, J.V. Minervini, F.J. Friedlaender, and S.R. Ash (1999). Feasibility of Direct Magnetic Separation of White Cells and Plasma from Whole Blood. Proceeding of IWCPB-HMF ‘99, November 24-26, Omiya, Saitama, Japan [7] 楊謝樂(民95)。磁性奈米粒子於生物醫學上之應用。物理雙月刊,二十八卷, 四期,692-697 [8] Shinkai, Masashige Ito, and Akira (2004). Functional Magnetic Particles for Medical Application. Adv Biochem Engin/Biotechnol 91: 191–220 [9] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P.M. Schlag (2002). Hyperthermia in combined treatment of cancer. The Lancet Oncol. 3, 487–97 [10] 大島宣雄(民101)。生物醫學工程概論。新竹市:百晴文化。 [11] 李玉寶(民95)。奈米生醫材料。台北市:五南。 [12] S.A. Schmitz, M. Taupitz, S. Wagner,K.J. Wolf, D. Beyersdorff and B. Hamm (2001). Magnetic Resonance Imaging of Atherosclerotic Plaques Using Superparamagnetic Iron Oxide Particles. Journal of Magnetic Resonance Imaging 14:355–361 [13] 俞耀庭(民93)。生物醫用材料。台北縣中和市:新文京開發。 [14] C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, and A.S. Lu‥bbe (2000). Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Res. 60, 6641–84 [15] C.Y. Hong, C.C. Wu, Y.C. Chiu, S.Y. Yang, H.E. Horng, and H.C. Yang (2006). Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl. Phys. Lett. 88, 212512 [16] H.E. Horng, S.Y. Yang, C.Y. Hong, C.M. Liu, P.S. Tsai, H.C. Yang, and C.C. Wu (2006). Biofunctionalized magnetic nanoparticles for high-sensitivity immunomagnetic detection of human C-reactive protein. Appl. Phys. Lett. 88, 252506 [17] S.Y. Yang, Z.F. Jian, J.J. Chieh, H.E. Horng, H.C. Yang, I.J. Huang, and Chin-Yih Hong (2008). Wash-free, antibody-assisted magnetoreduction assays of orchid viruses. Journal of Virological Methods 149 334–337 [18] S.Y. Yang, Z.F. Jian, H.E. Horng, C.Y. Hong, H.C. Yang, C.C Wu, and Y.H. Lee (2008). Dual immobilization and magnetic manipulation of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 320 2688–2691 [19] P. Dominguez-Garcia, S.Melle, O.G. Calderon, and M.A.Rubio (2005). Doublet dynamics of magnetizable particles under frequency modulated rotating fields. Colloids and Surfaces A, 270-271, 270 [20] A. Zakinyan, O. Nechaeva, and Yu. Dikansky (2012). Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Experimental Thermal and Fluid Science 39 265–268 [21] J.C. Lai, C.C. Tang, and C.Y. Hong (2013). Size-dependent motion of bio-functionalized magnetic nanoparticle clusters under a rotating magnetic field. J Nanopart Res 15:1378 [22] 唐嘉駿(民101)。生物功能性磁性奈米粒子的團簇在旋轉磁場之運動行為探 討。國立中興大學生醫工程研究所碩士論文。

In previous study, two modes of motion, rotation and oscillation, were observed when biofunctionalized magnetic nanoparticle clusters in an aqueous solution were subjected to a rotating magnetic field, and a critical cluster’s size was defined to distinguish the motion. The report revealed that as the frequency of the magnetic field increased and the field strength held constant, the critical cluster’s size decreased. On the other hand, as the field strength increased and the field frequency held constant, the critical cluster’s size increased.
Therefore, this study further investigate this interest behavior as the magnetic field was varied. The results showed that the phase lags of clusters exhibiting rotational motion increased as the field frequency increased or the field strength decreased. Contrarily, the amplitudes of clusters exhibiting oscillational motion decreased as the field frequency increased or the field strength decreased. Moreover, a field-dependent phase diagram was constructed to evaluate the efficacy of altering the cluster motion type by changing the field condition such as the frequency or amplitude for different cluster’s size.
其他識別: U0005-1306201314494800
Appears in Collections:生醫工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.