Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3965
標題: 生物功能性磁性奈米粒子團簇在旋轉磁場下之磁場相依性之運動行為
Field-dependent motion of bio-functionalized magnetic nanoparticle clusters under rotating magnetic fields
作者: 陳郁璇
Chen, Yu-Hsuan
關鍵字: 奈米粒子團簇;Nanoparticle cluster;旋轉磁場;磁場相依相圖;rotating magnetic fields;field-dependent phase diagram
出版社: 生醫工程研究所
引用: [1] W. C Elmore (1938). Ferromagnetic Colloid for Studying Magnetic Structures. Physical Review 54(4): 309-310 [2] S. S. Papell (1965). Manufacture of Magnetofluids. U. S. Patent, No.3215527,. [3] C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, and V.L. Colvinl (2006). Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals. SCIENCE, 10 NOVEMBER ,VOL 314, 964-967. [4] C.L. Chun, and J.W. Park (2001). Oil Spill Remediation Using Magnetic Separation. Journal of Environmental Engineering, Vol. 127, No. 5, May, pp. 443-449 [5] K.Y. Lien, J.L. Lin, C.Y. Liu, H.Y. Lei and G.B. Lee (2007). Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. The Royal Society of Chemistry ,10.1039/b700516d [6] M. Takayasu, D.R. Kelland, J.V. Minervini, F.J. Friedlaender, and S.R. Ash (1999). Feasibility of Direct Magnetic Separation of White Cells and Plasma from Whole Blood. Proceeding of IWCPB-HMF ‘99, November 24-26, Omiya, Saitama, Japan [7] 楊謝樂(民95)。磁性奈米粒子於生物醫學上之應用。物理雙月刊,二十八卷, 四期,692-697 [8] Shinkai, Masashige Ito, and Akira (2004). Functional Magnetic Particles for Medical Application. Adv Biochem Engin/Biotechnol 91: 191–220 [9] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P.M. Schlag (2002). Hyperthermia in combined treatment of cancer. The Lancet Oncol. 3, 487–97 [10] 大島宣雄(民101)。生物醫學工程概論。新竹市:百晴文化。 [11] 李玉寶(民95)。奈米生醫材料。台北市:五南。 [12] S.A. Schmitz, M. Taupitz, S. Wagner,K.J. Wolf, D. Beyersdorff and B. Hamm (2001). Magnetic Resonance Imaging of Atherosclerotic Plaques Using Superparamagnetic Iron Oxide Particles. Journal of Magnetic Resonance Imaging 14:355–361 [13] 俞耀庭(民93)。生物醫用材料。台北縣中和市:新文京開發。 [14] C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, and A.S. Lu‥bbe (2000). Locoregional Cancer Treatment with Magnetic Drug Targeting. Cancer Res. 60, 6641–84 [15] C.Y. Hong, C.C. Wu, Y.C. Chiu, S.Y. Yang, H.E. Horng, and H.C. Yang (2006). Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl. Phys. Lett. 88, 212512 [16] H.E. Horng, S.Y. Yang, C.Y. Hong, C.M. Liu, P.S. Tsai, H.C. Yang, and C.C. Wu (2006). Biofunctionalized magnetic nanoparticles for high-sensitivity immunomagnetic detection of human C-reactive protein. Appl. Phys. Lett. 88, 252506 [17] S.Y. Yang, Z.F. Jian, J.J. Chieh, H.E. Horng, H.C. Yang, I.J. Huang, and Chin-Yih Hong (2008). Wash-free, antibody-assisted magnetoreduction assays of orchid viruses. Journal of Virological Methods 149 334–337 [18] S.Y. Yang, Z.F. Jian, H.E. Horng, C.Y. Hong, H.C. Yang, C.C Wu, and Y.H. Lee (2008). Dual immobilization and magnetic manipulation of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 320 2688–2691 [19] P. Dominguez-Garcia, S.Melle, O.G. Calderon, and M.A.Rubio (2005). Doublet dynamics of magnetizable particles under frequency modulated rotating fields. Colloids and Surfaces A, 270-271, 270 [20] A. Zakinyan, O. Nechaeva, and Yu. Dikansky (2012). Motion of a deformable drop of magnetic fluid on a solid surface in a rotating magnetic field. Experimental Thermal and Fluid Science 39 265–268 [21] J.C. Lai, C.C. Tang, and C.Y. Hong (2013). Size-dependent motion of bio-functionalized magnetic nanoparticle clusters under a rotating magnetic field. J Nanopart Res 15:1378 [22] 唐嘉駿(民101)。生物功能性磁性奈米粒子的團簇在旋轉磁場之運動行為探 討。國立中興大學生醫工程研究所碩士論文。
摘要: 
在先前的研究中已知,對水溶液中的生物功能性磁性奈米粒子團簇外加一旋轉磁場會使其具有兩種運動模式,即為轉動和擺動,並定義出區分此兩種運動模式的關鍵團簇尺寸大小。該研究亦顯示,隨著頻率的增加,但仍維持磁場強度不變,關鍵團簇尺寸大小會減少;另一方面,當磁場強度增加,維持磁場頻率不變,關鍵團簇尺寸大小會增加。
因此,本論文進一步研究磁場變化對於磁性奈米粒子團簇運動的影響。結果顯示,當磁場頻率增加(強度固定)或磁場強度下降(頻率固定)時,轉動磁性團簇與磁場間的相位差會增加。反之,當磁場頻率增加(強度固定)或磁場強度減小(頻率固定)時,擺動磁性團簇之擺動振幅會隨之變小。由以上結果進而繪製一磁場相依相圖,透過此相圖可以比較欲變換不同大小之磁性奈米粒子團簇運動模式之磁場頻率或強度之有效性。

In previous study, two modes of motion, rotation and oscillation, were observed when biofunctionalized magnetic nanoparticle clusters in an aqueous solution were subjected to a rotating magnetic field, and a critical cluster’s size was defined to distinguish the motion. The report revealed that as the frequency of the magnetic field increased and the field strength held constant, the critical cluster’s size decreased. On the other hand, as the field strength increased and the field frequency held constant, the critical cluster’s size increased.
Therefore, this study further investigate this interest behavior as the magnetic field was varied. The results showed that the phase lags of clusters exhibiting rotational motion increased as the field frequency increased or the field strength decreased. Contrarily, the amplitudes of clusters exhibiting oscillational motion decreased as the field frequency increased or the field strength decreased. Moreover, a field-dependent phase diagram was constructed to evaluate the efficacy of altering the cluster motion type by changing the field condition such as the frequency or amplitude for different cluster’s size.
URI: http://hdl.handle.net/11455/3965
其他識別: U0005-1306201314494800
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.