Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3966
標題: 生物功能性磁性奈米粒子的團簇在旋轉磁場之運動行為探討
Behaviors of Bio-functionalized Magnetic Nanoparticle Clusters in Rotating Magnetic Fields
作者: 唐嘉駿
Tang, Chia-Chun
關鍵字: 磁性奈米粒子;magnetic nano-particle;免疫磁性減量分析技術;旋轉磁場;轉動運動;擺動運動;immuno-magnetic reduction;rotating magnetic field;rotation;oscillation
出版社: 生醫工程研究所
引用: [1] 楊謝樂, “磁性奈米粒子於生物醫學上之應用,”物理雙月刊(二十八卷四期) , 2006年8月692. [2] C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, D. Natelson, V.L. Colvin1, “Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals,” SCIENCE, 10 NOVEMBER ,VOL 314, 964-967(2006). [3] C.L. Chun, and J.W. Park, “Oil Spill Remediation Using Magnetic Separation,” Journal of Environmental Engineering, Vol. 127, No. 5, May, pp. 443-449(2001). [4] K.Y. Lien, J.L. Lin, C.Y. Liu, H.Y. Lei and G.B. Lee,”Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system,” The Royal Society of Chemistry ,10.1039/b700516d(2007). [5] M. Takayasu, D.R. Kelland, J.V. Minervini, F.J. Friedlaender, and S.R. Ash, “Feasibility of Direct Magnetic Separation of White Cells and Plasma from Whole Blood,” Proceeding of IWCPB-HMF ‘99, November 24-26, Omiya, Saitama, Japan, (1999). [6] S.A. Schmitz, M. Taupitz, S. Wagner,K.J. Wolf, D. Beyersdorff and B. Hamm , “Magnetic Resonance Imaging of Atherosclerotic Plaques Using Superparamagnetic Iron Oxide Particles,” JOURNAL OF MAGNETIC RESONANCE IMAGING 14:355–361 (2001) . [7] C. Alexiou, W. Arnold, R.J. Klein, F.G. Parak, P. Hulin, C. Bergemann, W. Erhardt, S. Wagenpfeil, and A.S. Lu¨bbe, “Locoregional Cancer Treatment with Magnetic Drug Targeting,” Cancer Res. 60, 6641–84 (2000). [8] P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P.M. Schlag, “Hyperthermia in combined treatment of cancer ,” The Lancet Oncol. 3, 487–97 (2002). [9] H.E. Horng, S.Y. Yang, C.Y. Hong, C.M. Liu, P.S. Tsai, H.C. Yang, and C.C. Wu,“Biofunctionalized magnetic nanoparticles for high-sensitivity immunomagnetic detection of human C-reactive protein,” Appl. Phys. Lett. 88, 252506 (2006). [10] R. Kötitz, H. Matz, L. Trahms, W. Weitschies, T. Rheinländer, W. Semmler and T. Bunte,“SQUID based remanence measurements for Immunoassays,” IEEE Trans. Appl. Supercon. 7, 3678-3681 (1997). [11] S.K. Lee, W.R. Myers, H.L. Grossman1, H.M. Cho, Y.R. Chemla and J. Clarke,“Magnetic gradiometer based on a high-transition temperature superconducting quantum interference device for improved sensitivity of a biosensor,”Appl. Phy. Lett. 81, 3094 (2002). [12] K. Enpuku, D. Kuroda, A. Ohba, T.Q. Yang, K. Yoshinaga, T. Nakahara, H. Kuma and N. Hamasaka, Jpn. J. ,“Biological Immunoassay Utilizing Magnetic Marker and High Tc Superconducting Quantum Interference Device Magnetometer ,” Appl. Phys. 42, L1436-L1438 (2003). [13] C.Y. Hong, C.C. Wu, Y.C. Chiu, S.Y. Yang, H.E. Horng, and H.C. Yang,“Magnetic susceptibility reduction method for magnetically labeled immunoassay ,” Appl. Phys. Lett. 88, 212512 (2006). [14] S.Y.Yang, C.B.Lan, C.H.Chen, H.E.Horng, Chin-Yih Hong, H.C.Yang, Y.K.Lai, Y.H.Lin , K.S.Teng ,“Independency of Fe ions in hemoglobin on immunomagnetic reduction assay,” Journal of Magnetism and Magnetic Materials 321, 3266–3269 (2009) [15] S.Y. Yang, W.C. Wang, C.B. Lan, C.H. Chen, J.J. Chieh, H.E. Horng, C. Y. Hong, H.C. Yang, C.P. Tsai, C.Y. Yang et al. ,“Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers ,” Journal of Virological Methods 164, 14-18 (2010). [16] P. Domínguez-García, S. Melle, O.G. Calderón, and M.A.Rubio.,“Doublet dynamics of magnetizable particles under frequency modulated rotating fields ,” Colloids and Surfaces A, 270-271, 270 (2005).
摘要: 
免疫磁性減量分析技術 (immuno-magnetic reduction -IMR),具有高度敏感性與特異性,但此高靈敏度、高特異性檢測方式其學理論述仍不清楚,有必要進一步釐清,因此本篇論文分析生物功能性磁性奈米粒子在水溶液中隨機鍵結而形成不同大小、不同幾何形狀之磁珠團簇粒徑大小與磁珠團簇運動行為之相關性。在頻率為0.5Hz旋轉磁場作用下,共分析241顆磁珠團簇,其中120顆為轉動運動,121顆則為擺動運動,發現磁珠團簇粒徑大於10.21 μm呈現擺動,磁珠團簇粒徑小於6.17μm轉動運動。以傅立葉轉換(Fourier Transform) 分析20顆轉動磁珠團簇,粒徑大小範圍介於1.86 到 5.91 μm之間,發現磁珠團簇之角頻率為3.14±0.019 rad/s,相位差與磁珠團簇粒徑大小之相關係數則為0.816 (P<0.001),分析完成20顆擺動磁珠團簇,粒徑大小範圍介於10.65 到 44.40 μm,磁珠團簇之角頻率為6.289±0.019 rad/s,擺動振幅與磁珠團簇粒徑大小之相關係數為-0.528 (P=0.017),結果顯示旋轉磁場中擺動磁珠團簇粒徑越大,所導致擺動振幅越小。上述所顯示磁珠團簇的運動行為與磁珠團簇粒徑大小有關,且磁珠團簇粒徑大小與轉動磁珠團簇相位差成正相關而與擺動磁珠團簇振幅成負相關。進一步分析磁場頻率增加時,關鍵粒徑範圍跟著縮小。
固定觀察一顆轉動磁珠團簇和擺動磁珠團簇,改變一系列之旋轉磁場頻率,當頻率上升時(0.5-12Hz),轉動磁珠團簇之相位差隨著變大,轉動磁珠團簇之頻率與旋轉磁場頻率相同,每個磁珠團簇之轉動頻率都有此現象,其相關係數都大於0.95,由此相關係數可得旋轉磁場與轉動磁珠團簇之運動一致,擺動磁珠團簇因旋轉磁場頻率上升,擺動振幅隨著變小,擺動磁珠團簇之頻率ωosc是旋轉磁場頻率 ω的兩倍。增強旋轉磁場強度,磁珠團簇轉動、擺動磁珠團簇粒徑大小皆變大,關鍵粒徑範圍增加。

A new immunoassay with high sensitivity and specificity has been reported and is called immuno-magnetic reduction (IMR). To facilitate the IMR using bio-functionalized magnetic nanoparticles, the understanding of behavior of magnetic particle clusters under rotating magnetic field is needed. In this study, these bio-functionalized magnetic nanoparticles in an aquous solution agglomerated and formed clusters with variable sizes and shapes. The behaviors of magnetic clusters subjected to rotating magnetic field of frequency 0.5Hz were analysis. Total 241 magnetic clusters were analyzed, in which 121 clusters exhibited oscillational motion and 120 clusters exhibited rotational motion. A range of critical diameter can be defined, which is from 10.21 μm to 6.17 μm, to distinguish the motion modes of clusters under a rotating magnetic field. Furthermore, total 20 rotational clusters and 20 oscillative clusters were analyzed by Fourier fitting to determine the relationship between the frequency and phase lag for clusters having rotation and the relationship between the frequency and amplitude for clusters having oscillation. The frequency of rotation clusters are 3.14±0.019 rad/s and the correlation coefficient between cluster size and phase lag is 0.816 (P<0.001). On the other hand, the frequency of oscillational cluster is 6.289±0.019 rad/s and the correlation coefficient between cluster size and amplitude is -0.528 (P=0.027). In conclusion, the motion modes of cluster under rotating magnetic fields are depended on the size of cluster. Furthermore, the lag angle of rotational clusters as well as the amplitude of oscillational clusters is size dependent.
URI: http://hdl.handle.net/11455/3966
其他識別: U0005-2607201216235400
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.