Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorShu-Ping Linen_US
dc.contributor.authorChen, Se-Fenen_US
dc.identifier.citation1.Blake DM, Maness P-C, Huang Z, Wolfrum EJ, Huang J, Jacoby WA: Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells. Separation & Purification Reviews 1999, 28(1):1-50. 2.Mills A, Lee S-K: A web-based overview of semiconductor photochemistry-based current commercial applications. Journal of Photochemistry and Photobiology A: Chemistry 2002, 152(1–3):233-247. 3.張安華: 實用奈米技術: 新文京開發出版股份有限公司; 民國94年. 4.Tokumasu F, Dvorak J: Development and application of quantum dots for immunocytochemistry of human erythrocytes. Journal of Microscopy 2003, 211(3):256-261. 5.Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P: Self-Contained, Fully Integrated Biochip for Sample Preparation, Polymerase Chain Reaction Amplification, and DNA Microarray Detection. Analytical Chemistry 2004, 76(7):1824-1831. 6.Kessler N, Ferraris O, Palmer K, Marsh W, Steel A: Use of the DNA flow-thru chip, a three-dimensional biochip, for typing and subtyping of influenza viruses. Journal of clinical microbiology 2004, 42(5):2173-2185. 7.Shih S-R, Wang Y-W, Chen G-W, Chang L-Y, Lin T-Y, Tseng M-C, Chiang C, Tsao K-C, Guei Huang C, Shio M-R et al: Serotype-specific detection of enterovirus 71 in clinical specimens by DNA microchip array. Journal of Virological Methods 2003, 111(1):55-60. 8.Hueber W, Robinson WH: Proteomic biomarkers for autoimmune disease. PROTEOMICS 2006, 6(14):4100-4105. 9.Paweletz CP, Gillespie JW, Ornstein DK, Simone NL, Brown MR, Cole KA, Wang Q-H, Huang J, Hu N, Yip T-T et al: Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip. Drug Development Research 2000, 49(1):34-42. 10.Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 2007, 28(22):3338-3348. 11.陳光華、鄧金祥: 奈米薄膜技術與應用. 台北: 五南圖書出版公司; 2005. 12.Yu JC, Yu, Ho, Jiang, Zhang: Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chemistry of Materials 2002, 14(9):3808-3816. 13.Zhang S, Chen Y, Yu Y, Wu H, Wang S, Zhu B, Huang W, Wu S: Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. Journal of Nanoparticle Research 2008, 10(5):871-875. 14.Liao J-Y, He J-W, Xu H, Kuang D-B, Su C-Y: Effect of TiO2 morphology on photovoltaic performance of dye-sensitized solar cells: nanoparticles, nanofibers, hierarchical spheres and ellipsoid spheres. Journal of Materials Chemistry 2012, 22(16):7910-7918. 15.Lin S-Y, Chen Y-C, Wang C-M, Liu C-C: Effect of heat treatment on electrochromic properties of TiO2 thin films. Journal of Solid State Electrochemistry 2008, 12(11):1481-1486. 16.Ghicov A, Tsuchiya H, Hahn R, Macak JM, Munoz AG, Schmuki P: TiO2 nanotubes: H+insertion and strong electrochromic effects. Electrochemistry Communications 2006, 8(4):528-532. 17.Oh S-H, Finones RR, Daraio C, Chen L-H, Jin S: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 2005, 26(24):4938-4943. 18.Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA: Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Lett 2005, 6(2):215-218. 19.高濂, 鄭珊, 張青紅: 奈米光觸媒: 五南書局; 2004. 20.簡國明: 奈米二氧化鈦專利地圖及分析; 1996. 21.高濂、鄭珊、張青紅: 奈米光觸媒. 台北: 五南出版社; 2004. 22.Chen Q, Du GH, Zhang S, Peng LM: The structure of trititanate nanotubes. Acta Crystallographica Section B 2002, 58(4):587-593. 23.Carp O, Huisman CL, Reller A: Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 2004, 32(1–2):33-177. 24.咸才軍: 奈米建材. 台北: 五南圖書出版股份有限公司; 2004. 25.Burdett JK, Hughbands T, Gordon JM, Richardson JJW, Smith JV: Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K. J Am Chem Soc 1987:3639-3646. 26.王世敏、許祖勛、傅晶: 奈米材料原理與製備: 五南圖書出版股份有限公司; 2004. 27.Jirhennsons B., Straumanis ME: Colloid Chemistry. In: McMillan Co. New York; 1962. 28.Zhang M, Bando Y, Wada K: Sol-gel template preparation of TiO2 nanotubes and nanorods. Journal of Materials Science Letters 2001, 20(2):167-170. 29.Yu J, Zhao X, Du J, Chen W: Preparation, Microstructure and Photocatalytic Activity of the Porous TiO2 Anatase Coating by Sol-Gel Processing. Journal of Sol-Gel Science and Technology 2000, 17(2):163-171. 30.Kim EK, Ho Son M, Min S-K, Han YK, Yom SS: Growth of highly oriented TiO2 thin films on InP(100) substrates by metalorganic chemical vapor deposition. Journal of Crystal Growth 1997, 170(1–4):803-807. 31.Yang L, Luo S, Cai Q, Yao S: A review on TiO2 nanotube arrays: Fabrication, properties, and sensing applications. Chin Sci Bull 2010, 55(4-5):331-338. 32.Bavykin DV, Friedrich JM, Walsh FC: Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Advanced Materials 2006, 18(21):2807-2824. 33.Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells 2006, 90(14):2011-2075. 34.Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC: Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2001, 16(12):3331-3334. 35.Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P: Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F ∕  ( NH4 ) 2SO4 Electrolytes. Journal of The Electrochemical Society 2005, 152(10):B405-B410. 36.Ruan C, Paulose M, Varghese OK, Mor GK, Grimes CA: Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte. The Journal of Physical Chemistry B 2005, 109(33):15754-15759. 37.Ghicov A, Tsuchiya H, Macak JM, Schmuki P: Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications 2005, 7(5):505-509. 38.Tsuchiya H, Macak JM, Taveira L, Balaur E, Ghicov A, Sirotna K, Schmuki P: Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes. Electrochemistry Communications 2005, 7(6):576-580. 39.Macak JM, Sirotna K, Schmuki P: Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochimica Acta 2005, 50(18):3679-3684. 40.Yang L, Cai Q, Yu Y: Size-Controllable Fabrication of Noble Metal Nanonets Using a TiO2 Template. Inorganic Chemistry 2006, 45(24):9616-9618. 41.Cai Q, Yang L, Yu Y: Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid Films 2006, 515(4):1802-1806. 42.Prakasam HE, Shankar K, Paulose M, Varghese OK, Grimes CA: A New Benchmark for TiO2 Nanotube Array Growth by Anodization. The Journal of Physical Chemistry C 2007, 111(20):7235-7241. 43.Park J, Bauer S, von der Mark K, Schmuki P: Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 2007, 7(6):1686-1691. 44.Fujishima A. HK, Watanabe T. : TiO2 Photocatalysis: Fundamentals and Applications: BKC Inc.; 1999. 45.Bhardwaj T, Pilliar RM, Grynpas MD, Kandel RA: Effect of material geometry on cartilagenous tissue formation in vitro. Journal of Biomedical Materials Research 2001, 57(2):190-199. 46.Brammer KS, Oh S, Frandsen CJ, Varghese S, Jin S: Nanotube surface triggers increased chondrocyte extracellular matrix production. Materials Science and Engineering: C 2010, 30(4):518-525. 47.Popat KC, Leoni L, Grimes CA, Desai TA: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007, 28(21):3188-3197. 48.Galois L, Freyria AM, Grossin L, Hubert P, Mainard D, Herbage D, Stoltz JF, Netter P, Dellacherie E, Payan E: Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials. Biorheology 2004, 41(3-4):433-443. 49.Hwang NS, Varghese S, Lee HJ, Theprungsirikul P, Canver A, Sharma B, Elisseeff J: Response of zonal chondrocytes to extracellular matrix-hydrogels. FEBS letters 2007, 581(22):4172-4178. 50.Vacanti CA, Kim W, Upton J, Vacanti MP, Mooney D, Schloo B, Vacanti JP: Tissue-engineered growth of bone and cartilage. Transplantation proceedings 1993, 25(1 Pt 2):1019-1021. 51.Freed LE, Hollander AP, Martin I, Barry JR, Langer R, Vunjak-Novakovic G: Chondrogenesis in a cell-polymer-bioreactor system. Experimental cell research 1998, 240(1):58-65. 52.Cui YL, Hou X, Qi AD, Wang XH, Wang H, Cai KY, Ji Yin Y, De Yao K: Biomimetic surface modification of poly (L-lactic acid) with gelatin and its effects on articular chondrocytes in vitro. Journal of biomedical materials research Part A 2003, 66(4):770-778. 53.Gong Y, Ma Z, Zhou Q, Li J, Gao C, Shen J: Poly(lactic acid) scaffold fabricated by gelatin particle leaching has good biocompatibility for chondrogenesis. Journal of biomaterials science Polymer edition 2008, 19(2):207-221. 54.Deng Y, Zhao K, Zhang XF, Hu P, Chen GQ: Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 2002, 23(20):4049-4056. 55.Perez Olmedilla M, Garcia-Giralt N, Pradas MM, Ruiz PB, Gomez Ribelles JL, Palou EC, Garcia JC: Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials 2006, 27(7):1003-1012. 56.蔣若玫: 陶瓷二氧化鈦奈米管柱對纖維母細胞生長之影響. 國立中興大學生醫工程研究所碩士學位論文 2012. 57.Lee MY, Kumar RA, Sukumaran SM, Hogg MG, Clark DS, Dordick JS: Three-dimensional cellular microarray for high-throughput toxicology assays. Proc Natl Acad Sci U S A 2008, 105(1):59-63. 58.Premix WST-1 Cell Proliferation Assay System [] 59.汪建民: 材料分析: 中國材料科學學會; 民國87年. 60.國立中興大學材料科學與工程學系:場發射掃描式電子顯微鏡(JEOL JSM-6700F) 國科會貴重儀器 [] 61.國立中興大學材料科學與工程學系:化學分析電子能譜儀 國科會貴重儀器 [] 62.鄭信民、林麗娟: X 光繞射應用簡介. 工業材料雜誌 民國91年, 181:100-108. 63.林麗娟: X 光繞射原理及其應用. 工業材料雜誌 民國83年, 86:100-109. 64.Herman GS, Gao Y, Tran TT, Osterwalder J: X-ray photoeectron diffraction study of an anatase thin film: TiO2(001). Surface Science 2000, 447(1–3):201-211. 65.Lukač J, Klementova M, Bezdička P, Bakardjieva S, Šubrt J, Szatmary L, Bastl Z, Jirkovsky J: Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol. Applied Catalysis B: Environmental 2007, 74(1–2):83-91. 66.Hung W-C, Chen Y-C, Chu H, Tseng T-K: Synthesis and characterization of TiO2 and Fe/TiO2 nanoparticles and their performance for photocatalytic degradation of 1,2-dichloroethane. Applied Surface Science 2008, 255(5, Part 1):2205-2213. 67.Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z: Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Applied Catalysis B: Environmental 2007, 69(3–4):138-144. 68.Sunding MF, Jensen IT, Stenstad PM, Diplas S: ARXPS and high energy XPS characterisation of titanium surfaces for medical implants. Surface and Interface Analysis 2008, 40(3-4):751-753. 69.Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS: XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir 2001, 17(9):2664-2669. 70.Ni W, Wu S, Ren Q: Preparation and Characterization of Silanized TiO2 Nanoparticles and Their Application in Toner. Industrial & Engineering Chemistry Research 2012, 51(40):13157-13163. 71. Hornetz B, Michel H-J, Halbritter J: ARXPS studies of SiO-SiC interfaces and oxidation of 6H SiC single crystal Si-(001) and C-(001) surfaces. Journal of Materials Research 1994, 9(12):3088-3094. 72.林紋瑞、陳威任、吳靖宙、張志涵、張憲彰: 可評估細胞力學的微力量感測系統之研發與應用. 工業材料雜誌 94年2月, 218:1-12. 73.Roshasnorlyza Hazan SS, Adilah Abdul Khalil,, Mat IMSNaI: Surface Engineering of Titania for Excellent Fibroblast 3T3 Cell-Metal Interaction Journal of Physical Science 2009, 20(1):35-47.en_US
dc.description.abstract奈米技術在醫學方面已經備受關注。在本研究中,我們探討未經表面改質以及經過表面改質後的二氧化鈦奈米結構對細胞生長和型態變化的影響。首先,採用陽極氧化方法製備二氧化鈦奈米管柱,隨後利用APTMS做二氧化鈦奈米結構的表面改質。並藉由X光繞射儀和掃描式電子顯微鏡分析二氧化鈦奈米管柱結構。X光繞射儀分析顯示奈米管柱的結構為二氧化鈦,以掃描式電子顯微鏡觀察二氧化鈦奈米管柱之表面形貌,得知其管柱直徑大約為60.374nm。利用電子能譜化學分析儀分析基材鈦網、未經表面改質的二氧化鈦以及經過APTMS表面改質的二氧化鈦之特性。電子能譜化學分析儀結果顯示我們成功地在二氧化鈦表面做改質,使二氧化鈦表面帶有功能性的胺基,-NH2 binding energy為399.8eV,NH3+ binding energy為401.5 eV。為了研究奈米結構對細胞生長的影響,將3T3纖維母細胞分別培養於基材鈦網、未經表面改質的二氧化鈦以及經過APTMS表面改質的二氧化鈦的材料中,並利用顯微鏡觀察細胞生長的情形。在掃描式電子顯微鏡的觀察下,可以看見細胞健康地生長在二氧化鈦奈米結構上。另外,利用螢光顯微鏡的觀察可以看到細胞生長在二氧化鈦奈米結構上。細胞數目的定量分析上顯示出經由APTMS表面改質的二氧化鈦能夠促進細胞增生,其平均細胞數目為993,000(基材鈦網:639,000、未經表面改質的二氧化鈦:841,000)。我們發現APTMS表面改質的二氧化鈦與基材鈦網和未經改質的二氧化鈦相比, APTMS表面改質的二氧化鈦能夠提高整體細胞生長的能力達35.6%。我們的研究顯示了APTMS表面改質的二氧化鈦能夠促進細胞生長,且具有良好的生物相容性。zh_TW
dc.description.abstractNanotechnology had been drawn a lot of attentions in many biomedical aspects. In this study, we used unmodified and modified titania (TiO2) surfaces to investigate the effect of nanostructure on cell morphological change and cell growth. First, the structure of TiO2 nanotubes was prepared by anodization. After that, the nanostructures of TiO2 were further modified by 3-aminoproplytrime thexysilane (APTMS). X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to analyze the structures of TiO2 nanotubes. XRD showed the nanotubes consisted of TiO2. Those TiO2 nanotubes were around 60.374 nm in diameter in SEM images. Electron spectroscopy for chemical analysis (ESCA) was used to characterize the original Ti web, unmodified TiO2, and APTMS modified TiO2. ESCA showed the successful surface modification with the specific amine (-NH2) functional groups on the surface of APTMS modified TiO2 (-NH2 was at 399.8 eV and NH3+ was at around 401.5 eV). In order to investigate the effect of TiO2 nanostructure on cell growth, 3T3 fibroblasts were independently cultured on the original Ti web, unmodified TiO2, and APTMS modified TiO2. Microscopy was used to examine the cells on the nanostructured TiO2 substrates. SEM displayed the cells healthily grew on TiO2 nanostructures. In addition, fluorescent images visualized the relative position of cells on TiO2 nanostructures. Quantitative analyses of cell numbers exhibited APTMS modified TiO2 effectively facilitated the cell proliferation with an increasingly cellular growth. We found APTMS modified TiO2 improved the overall capability of cell growth up to 35.6 % in our in-vitro observation in comparison with Ti and unmodified TiO2 substrates. Our study showed that APTMS modified TiO2 increased cell growth and possessed better biocompatibility.en_US
dc.description.tableofcontents誌謝.............................I 摘要............................II Abstract......................III 總目錄..........................IV 圖目錄..........................VI 表目錄..........................IX 第一章 緒論.......................1 1-1 奈米材料和技術發展簡史......1 1-2 二氧化鈦簡介..............5 1-3 二氧化鈦製備方法...........9 (一) 溶膠凝膠法(sol-gel)......9 (二) 化學氣相沉積法(Chemical Vapor Deposition).....10 (三) 陽極氧化法................12 1-4 二氧化鈦於目前生醫上的應用...16 1-5 研究動機與目的............17 第二章 實驗材料與方法..............18 2-1 實驗藥品.................18 2-2 實驗方法.................20 2-2-1 二氧化鈦奈米管柱之製備......20 2-2-2 APTMS表面修飾............22 2-2-3 細胞培養.................24 2-2-3-1 培養液配製...............24 2-2-3-2 細胞繼代.................24 2-2-4 螢光染色與觀察............24 2-2-5 WST-1分析試驗............25 2-2-6 MetaMorph軟體分析 26 2-3 材料分析方法..............26 2-3-1 掃描式電子顯微鏡..........26 2-3-2 電子能譜化學分析儀.........28 2-3-3 X光繞射儀(X-ray diffraction, XRD)....29 第三章 結果......................30 3-1 二氧化鈦奈米管柱之製備.....30 3-2 ESCA表面化學元素分析......34 3-3 XRD分析.................45 3-4 細胞實驗.................50 3-4-1 細胞生長貼附變化...........50 3-4-2 Cell cycle 之分析 ........58 3-4-3 WST-1分析................63 第四章 討論.......................66 第五章 結論.......................72 參考文獻..........................74 第六章 補充資料...................80 6-1 AFM表面型態分析...........80 6-2 MCF人類乳癌細胞之細胞生長貼附變化....82zh_TW
dc.subjectsurface modificationen_US
dc.subjectcell growthen_US
dc.titleObservation of Cell Growth on the Nanostructured TiO2 Surfacesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:生醫工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.