Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3972
標題: 評估吩噻嗪衍生物作為近紅外光光動力治療與新型活性氧化物之可行性
Evaluation of Phenothiazine Derivatives – Selective Near-infrared Photodynamic Therapy and New Reactive Oxygen Species Photosensitizers
作者: 謝東昇
Hsieh, Tung-Sheng
關鍵字: 吩噻嗪;Phenothiazine;進紅外光;光動力治療;Near-infrared;Photodynamic Therapy
出版社: 生醫工程研究所
引用: 1. (a) D. E.J.G.J. Dolmans, D. Fukumura, R. K. Jain. Nature Revs. cancer, 2003, 3, 380-87. (b) R. Ackroyd, C. Kelty, N. Brown, M. Reed. Photochem. Photobiol, 2001, 74, 656-66. 2. T. J. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle, A. Mittleman. Cancer Rev, 1978, 38, 2628-35. 3. K. Kalka, H. Merk, H. Mukhtar. J Am Acad Dermatol, 2000, 42, 389-13 4. J. F. Kelly, M. E. Snell, M. C. Berenbaum. Br J Cancer, 1975, 31, 237-44. 5. A. G. Wile, A. Dahlman, R. G. Burns, M. W. Berns. Lasers Surg Med, 1982, 2, 163-68. 6. B. N. Achar, M. A. Ashok. Mat Chem Phys, 2008, 108, 8–15. 7. D. W. Cho, M Fujitsuka, A. Sugimoto, U. C. Yoon, P. S. Mariano, T. Majima. J Phys Chem B, 2006, 110, 11062–68. 8. A. Stockmann, J. Kurzawa, N. Fritz, N. Acar, S. Schneider, J. Daub. J Phys Chem A, 2002, 106, 7958–70. 9. (a) C. S. Kramer, K. Zeitler, T. J. J. Muller. Tetrahedron Lett. 2001, 42, 8619-24. (b) C. S. Kramer, T. J. Zimmermann, M. Sailer, T. J. J. Muller. Synthesis, 2002, 1163-70. 10. (a) T. J. J. Muller. Tetrahedron Lett. 1999, 40, 6563-66. (b) C. S. Kramer, K. Zeitler, T. J. J. Muller. Org. Lett. 2000, 2, 3723-26. (c) C. S. Kramer, T. J. J. Muller. Eur. J. Org. Chem. 2003, 68, 3534-48. (d) M. Hauck, J. Schonhaber, A. J. Zucchero, K. I. Hardcastle, T. J. J. Muller, U. H. F. Bunz. J. Org. Chem. 2007, 72, 6714-25. 11. M. Sailer, M. Nonnenmacher, T. Oeser, T. J. J. Muller. Eur. J. Org. Chem. 2006, 423-35. 12. (a) W. J. Albery, A. W. Foulds, K. J. Hall, A. R. Hillman, R. G. Edgell, A. F. Orchard. Nature 1979, 282, 793–97. (b) A. Mattana, G. Biancu, L. Alberty, A. Accardo, G. Delogu, P. L. Fiori, et al. Antimicrob. Agent Chemothe., 2004, 48, 4520–27. (c) C. Wagner, H. A. Wagenknecht. Org Biomol Chem, 2008, 6, 48–50. 13. (a) G. R. N. Jones. Hypotheses Med, 1996, 46, 25. (b) D. Ordway, M. Viveiros, C. Leandro, R. Bettencourt, J. Almeida, M. Martins, J. E. Kristianseu, J. Molnar, L. Amaral, Antimicrob. Agents Chemother, 2003, 47, 917-22. (c) M. Tanaka, J. Molnar, S. Kidd. AntiCancer Res, 1997, 17, 381-85. 14. (a) F. Mietzsch. Angew. Chem, 1954, 66, 363. (b) A. G. Motten, G. R. Buettner, C. F. Chignell. Photochem. Photobiol, 1985, 42, 9-15. 15. (a) G. W. Kim, M. J. Cho, Y-J. Yu, Z. H. Kim, J-I. Jin, D. Y. Kim, D. H. Choi. Chem. Mater, 2007, 19, 42-50. (b) L. Yang, J.-K. Feng, A.-M. Ren. J. Org. Chem. 2005, 70, 5987-96. 16. (a) C. O. Okafor, Dyes Pigmen, 1986, 7, 249-87. (b) J.-J Aaron, M. Maafi, C. Kersebet, C. Parkanyi, M. S. Antonious, N. Motohashi. Photochem. Photobiol. A, 1996, 101, 127-36. 17. T. Okamoto, M. Kuratsu, M. Kozaki, K. Hirotsu, A. Ichimura, T. Matsushita, K. Okada. Org. Lett, 2004, 6 , 3493-96. 18. S. Aftergut, G. P. Brown. Nature, 1962, 193, 361-62 19. J. 2nd Clifton, J. B. Leikin. Am J Ther, 2003, 10, 289-91. 20. G. J. Naylor, B. Martin, S. E. Hopwood, Y. Watson. Biol Psychiatry, 1986, 21, 915-20. 21. W. P. Arnold, C. K. Mittal, S. Katsuki, F. Murad. Proc Natl Acad Sci, 1977, 74, 3203-07. 22. H. C. Junqueira, D. Severino, L. G. Dias, M. Gugliotti, M. S. Baptista. Phys Chem Chem Phys, 2002, 4, 2320-28. 23. J. P. Tardivo, A. D. Giglio, C. S. de Oliveira, D. S. Gabrielli, H. C. Junqueira, D. B. Tada, D. Severino, R. de F. Turchiello,M. S. Baptista. Photodiagn Photodyn, 2005, 2, 175-91. 24. Y. G. Chen, W. Zheng, Y. Q. Li, J. Y. Zhong, J. G. Ji, P. P. Shen. Cancer Sci, 2008, 99, 2019–27. 25. J. F. Papin, R. A. Floyd, D. P. Dittmer. Antiviral Res, 2005, 68, 84–87. 26. M. Salah, N. Samy, M. J. Fadel. Drugs Dermatol, 2009, 8, 42–49. 27. K. Muller-Breitkreutz, H. Mohr. J. Med. Virol, 1998, 56, 239–45. 28. (a) H. H. Lin, S. Y. Su, C. C. Chang. Org. Biomol. Chem, 2009, 7, 2036–39. (b) H. H. Lin, C. C. Chang. Dyes Pigmen, 2009, 83, 230–36. (c) S. Y. Su, H. H. Lin, C. C. Chang. J. Mater. Chem, 2010, 20, 8653–58. 29. (a) B. K. An, S. K. Kwon, S. D. Jung, S. Y. Park, J. Am. Chem. Soc, 2002, 124, 14410-15. (b) D.Horn, J. Rieger, Angew. Chem., Int. Ed, 2001, 40, 4330-61. 30. O. E. Akilov, S. Kosaka, K. O''Riordan, T. Hasan. Photochem. Photobiol. Sci., 2007, 6, 1067-75. 31. C. Wang, H. Q. Tao, L. Cheng, Z. Liu. Biomaterials, 2011, 32, 6145-54. 32. R. B. Vegh, K. M. Solntsev, M. K. Kuimova, S. H. Cho, Y. Liang, B. L. W. Loo, L. M. Tolbert, A. S. Bommarius. Chem. Commun., 2011, 47, 4887–89. 33. D. K. Miller, E. Griffiths, J. Lenard, et al. J Cell Biol, 1983, 97, 1841-51 34. Y. Zorlu, F. Dumoulin, Ma. Durmus, Vefa Ahsen, Tetrahedron, 2010, 66, 3248-58.
摘要: 
本研究中使用Suzuki coupling反應合成出在3,7號位置具有不同推拉電子取代基的10H- Phenothiazine (PTZ)衍生物,並研究其在酸性以及鹼性條件的光學性質,並且將其氧化,探討氧化產物應用於光動力治療的可行性。在酸性條件下,具有aniline與dimethyl aniline取代的PTZ化合物在質子化後,螢光劇烈增強,推測原因乃因分子聚集形成螢光有機奈米粒(Fluorescent Organic Nanoparticals, FONs)。而在鹼性條件下,此類分子吸收訊號會因去質子化而紅位移且出現紅色螢光。而具有nitrobenzene和N-butyl-1,8-naphthalimide取代的化合物的吸收訊號則會因去質子化位移到800nm以上但無明顯螢光。
此外aniline與dimethyl aniline取代的PTZ化合物經氧化後都具有超過900nm的吸收訊號,並且根據DPBF和TEMPO-9-AC測試確定前者分子在照光後能產生單重態氧以及自由基 (free radical) ;並在細胞光毒性實驗中發現對於癌細胞有選擇性,其原因是因為HeLa對於化合物的攝取量較高,且分子會累積在的溶酶體當中。

A series of 10H-phenothiazine (PTZ) derivative fluorophores ,Suzuki coupling with electron donating and/or withdrawing substitution group in 3, 7-position were prepared. In acidic condition, proton accepter groups aniline and dimethylaniline substituted PTZ derivatives could be protonated and aggregated to become fluorescent organic nanoparticles (FONs) accompany with fluorescent enhancement. On the other hand, anionic forms of these derivatives exhibited strong red light emission in alkali DMSO solutions, whereas anionic nitrobenzene and naphthaleneimide substituted PTZ derivatives exhibited the near infrared absorption at 820-840 nm. Furthermore, the oxidized aniline and dimethylaniline substituted PTZ derivatives exhibited the near infrared absorption wavelength over 900nm. The DPBF and TEMPO-9-AC have been used to detect singlet oxygen and free radical formation of compounds respectively. Biologically, the unexpected selective photo-toxicity between HeLa and MRC-5 Cell lines is caused by cellular uptake and localization difference. Consequently, oxidized aniline substituted PTZ can be a selective Near-Infrared photodynamic therapy candidate.
URI: http://hdl.handle.net/11455/3972
其他識別: U0005-2108201311110500
Appears in Collections:生醫工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.