Please use this identifier to cite or link to this item:
標題: 金奈米粒子比色法結合微流體式紙分析元件應用於微量汞偵測
Intergration of Gold Nanoparticle Colorimetric Assay and Microfluidic Paper Based Analytical Devices for Mercury Detection
作者: 陳冠樺
Chen, Guan-Hua
關鍵字: 金奈米粒子;Au NPs;層析紙;汞;Chromotagraphy paper;mercury
出版社: 生醫工程研究所
引用: [1] J. C. Igwe, E. C. Nwokennaya, and A. A. Abia, &quot;The role of pH in heavy metal detoxification by bio-sorption from aqueous solutions containing chelating agents,&quot; African Journal of Biotechnology, vol. 4, pp. 1109-1112, Oct 2005. [2] &quot;The Madison declaration on mercury pollution,&quot; Ambio, vol. 36, pp. 62-65, Feb 2007. [3] R. Lutter and E. Irwin, &quot;Mercury in the environment: A volatile problem,&quot; Environment, vol. 44, pp. 24-40, Nov 2002. [4] A. C. Heyvaert, J. E. Reuter, D. G. Slotton, and C. R. Goldman, &quot;Paleolimnological reconstruction of historical atmospheric lead and mercury deposition at Lake Tahoe, California-Nevada,&quot; Environmental Science & Technology, vol. 34, pp. 3588-3597, Sep 1 2000. [5] P. F. Schuster, D. P. Krabbenhoft, D. L. Naftz, L. D. Cecil, M. L. Olson, J. F. Dewild, D. D. Susong, J. R. Green, and M. L. Abbott, &quot;Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources,&quot; Environmental Science & Technology, vol. 36, pp. 2303-2310, Jun 1 2002. [6] J. A. Plant, A. Korre, S. Reeder, B. Smith, and N. Voulvoulis, &quot;Chemicals in the environment,&quot; Geochimica Et Cosmochimica Acta, vol. 68, pp. A527-A527, Jun 2004. [7] U. N. E. P. Chemicals., &quot;Global Mercury Assessment,&quot; Geneva, 2002. [8] S. Lindberg, R. Bullock, R. Ebinghaus, D. Engstrom, X. B. Feng, W. Fitzgerald, N. Pirrone, E. Prestbo, and C. Seigneur, &quot;A synthesis of progress and uncertainties in attributing the sources of mercury in deposition,&quot; Ambio, vol. 36, pp. 19-32, Feb 2007. [9] IPCS. (1990). Methylmercury. Available: [10] F. Slemr and E. Langer, &quot;Increase in Global Atmospheric Concentrations of Mercury Inferred from Measurements over the Atlantic-Ocean,&quot; Nature, vol. 355, pp. 434-437, Jan 30 1992. [11] A. Renzoni, F. Zino, and E. Franchi, &quot;Mercury levels along the food chain and risk for exposed populations,&quot; Environmental Research, vol. 77, pp. 68-72, May 1998. [12] S. Yoon, E. W. Miller, Q. He, P. H. Do, and C. J. Chang, &quot;A bright and specific fluorescent sensor for mercury in water, cells, and tissue,&quot; Angewandte Chemie-International Edition, vol. 46, pp. 6658-6661, 2007. [13] J. Mutter, J. Naumann, C. Sadaghiani, R. Schneider, and H. Walach, &quot;Alzheimer Disease: Mercury as pathogenetic factor and apolipoprotein E as a moderator,&quot; Neuroendocrinology Letters, vol. 25, pp. 331-339, Oct 2004. [14] J. S. Kuwabara, Y. Arai, B. R. Topping, I. J. Pickering, and G. N. George, &quot;Mercury speciation in piscivorous fish from mining-impacted reservoirs,&quot; Environmental Science & Technology, vol. 41, pp. 2745-2749, Apr 15 2007. [15] T. Barkay, S. M. Miller, and A. O. Summers, &quot;Bacterial mercury resistance from atoms to ecosystems,&quot; Fems Microbiology Reviews, vol. 27, pp. 355-384, Jun 2003. [16] L. M. Thomas W. Clarkson, Gary J. Myers, &quot;The Toxicology of Mercury Current Exposures and Clinical Manifestations.,&quot; The New England Journal of Medicine, vol. 349, pp. 1731-1737, 2003. [17] T. W. Clarkson, L. Magos, and G. J. Myers, &quot;The toxicology of mercury - Current exposures and clinical manifestations,&quot; New England Journal of Medicine, vol. 349, pp. 1731-1737, Oct 30 2003. [18] D. W. Boening, &quot;Ecological effects, transport, and fate of mercury: a general review,&quot; Chemosphere, vol. 40, pp. 1335-1351, Jun 2000. [19] J. B. N. Mauro, J. R. D. Guimaraes, H. Hintelmann, C. J. Watras, E. A. Haack, and S. A. Coelho-Souza, &quot;Mercury methylation in macrophytes, periphyton, and water - comparative studies with stable and radio-mercury additions,&quot; Analytical and Bioanalytical Chemistry, vol. 374, pp. 983-989, Nov 2002. [20] N. E. Selin, &quot;Global Biogeochemical Cycling of Mercury: A Review,&quot; Annual Review of Environment and Resources, vol. 34, pp. 43-63, 2009. [21] F. Zahir, S. J. Rizwi, S. K. Haq, and R. H. Khan, &quot;Low dose mercury toxicity and human health,&quot; Environmental Toxicology and Pharmacology, vol. 20, pp. 351-360, Sep 2005. [22] A. H. Stern, &quot;A review of the studies of the cardiovascular health effects of methylmercury with consideration of their suitability for risk assessment,&quot; Environmental Research, vol. 98, pp. 133-142, May 2005. [23] D. L. Tsalev, &quot;Atomic Absorption Spectrometry in Occupational and Environmental Health Practice&quot;Volume II, Determination of Individual Elements.,&quot; ed, 1984. [24] D. H. Nam and N. Basu, &quot;Rapid methods to detect organic mercury and total selenium in biological samples,&quot; Chemistry Central Journal, vol. 5, Jan 13 2011. [25] C. V. P. K.A. Graeme, &quot;<Heavy Metal Toxicity, Part I: Arsenic and Mercury.pdf>,&quot; Emergency Medicine, vol. 16, pp. 45-56, 1998. [26] M. V. Rao, A. Purohit, and T. Patel, &quot;Melatonin protection on mercury-exerted brain toxicity in the rat,&quot; Drug and Chemical Toxicology, vol. 33, pp. 209-216, Apr 2010. [27] H. Tokuomi, M. Uchino, S. Imamura, H. Yamanaga, R. Nakanishi, and T. Ideta, &quot;Minamata Disease (Organic Mercury-Poisoning) - Neuroradiologic and Electrophysiologic Studies,&quot; Neurology, vol. 32, pp. 1369-1375, 1982. [28] E. Holmes and J. Nicholson, &quot;Variation in gut microbiota strongly influences individual rodent phenotypes,&quot; Toxicological Sciences, vol. 87, pp. 1-2, Sep 2005. [29] H. Nishimura and M. Kumagai, &quot;Mercury Pollution of Fishes in Minamata-Bay and Surrounding Water - Analysis of Pathway of Mercury,&quot; Water Air and Soil Pollution, vol. 20, pp. 401-411, 1983. [30] WHO. (2004). Guidelines for Drinking-water quality 3rdedition. Available: [31] R. M. Dagnall, J. M. Manfield, M. D. Silvester, and T. S. West, &quot;Atomic Absorption and Emission Spectrometry of Mercury at 184.9nm,&quot; Spectroscopy Letters, vol. 6, pp. 183-189, 1973/01/01 1973. [32] D.-N. Lee, G.-J. Kim, and H.-J. Kim, &quot;A Fluorescent coumarinylalkyne probe for the selective detection of mercury(II) ion in water,&quot; Tetrahedron Letters, vol. 50, pp. 4766-4768, 2009. [33] D. Han, Y.-R. Kim, J.-W. Oh, T. H. Kim, R. K. Mahajan, J. S. Kim, and H. Kim, &quot;A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(ii),&quot; Analyst, vol. 134, pp. 1857-1862, 2009. [34] 曹茂盛、關長斌、徐甲強, 奈米材料導論: 學富文化事業有限公司, 2002. [35] J. Turkevich, P. C. Stevenson, and J. Hillier, &quot;A study of the nucleation and growth processes in the synthesis of colloidal gold,&quot; Discussions of the Faraday Society, vol. 11, p. 55, 1951. [36] F. G, &quot;<Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions.pdf>,&quot; Nature Phy Sci, vol. 241, pp. 20-22, 1973. [37] R. Wilson, &quot;The use of gold nanoparticles in diagnostics and detection,&quot; Chemical Society Reviews, vol. 37, pp. 2028-2045, Sep 2008. [38] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, &quot;Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system,&quot; Journal of the Chemical Society, Chemical Communications, pp. 801-802, 1994. [39] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, &quot;Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid?Liquid system,&quot; Journal of the Chemical Society, Chemical Communications, p. 801, 1994. [40] K. Mallick, Z. L. Wang, and T. Pal, &quot;Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis,&quot; Journal of Photochemistry and Photobiology a-Chemistry, vol. 140, pp. 75-80, Apr 13 2001. [41] C. H. Kuo, T. F. Chiang, L. J. Chen, and M. H. Huang, &quot;Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate,&quot; Langmuir, vol. 20, pp. 7820-7824, Aug 31 2004. [42] G. K. Darbha, A. Ray, and P. C. Ray, &quot;Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish,&quot; Acs Nano, vol. 1, pp. 208-214, Oct 2007. [43] J. S. Lee, M. S. Han, and C. A. Mirkin, &quot;Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles,&quot; Angewandte Chemie-International Edition, vol. 46, pp. 4093-4096, 2007. [44] J. S. Lee and C. A. Mirkin, &quot;Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles,&quot; Analytical Chemistry, vol. 80, pp. 6805-6808, Sep 1 2008. [45] E. Carrilho, S. T. Phillips, S. J. Vella, A. W. Martinez, and G. M. Whitesides, &quot;Paper Microzone Plates,&quot; Analytical Chemistry, vol. 81, pp. 5990-5998, Aug 1 2009. [46] E. Jungreis, Spot Test Analysis: Clinical, Environmental, Forensic, and Geochemical Applications, 2nd ed: John Wiley & Sons, Inc., 1997. [47] A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, &quot;Patterned paper as a platform for inexpensive, low-volume, portable bioassays,&quot; Angewandte Chemie-International Edition, vol. 46, pp. 1318-1320, 2007. [48] C. M. Cheng, A. W. Martinez, J. L. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, &quot;Paper-Based ELISA,&quot; Angewandte Chemie-International Edition, vol. 49, pp. 4771-4774, 2010. [49] T. Balaji, S. A. El-Safty, H. Matsunaga, T. Hanaoka, and F. Mizukami, &quot;Optical sensors based on nanostructured cage materials for the detection of toxic metal ions,&quot; Angewandte Chemie-International Edition, vol. 45, pp. 7202-7208, 2006. [50] S. Pacheco, M. Medina, F. Valencia, and J. Tapia, &quot;Removal of inorganic mercury from polluted water using structured nanoparticles,&quot; Journal of Environmental Engineering-Asce, vol. 132, pp. 342-349, Mar 2006. [51] K. Leopold, M. Foulkes, and P. J. Worsfold, &quot;Gold-Coated Silica as a Preconcentration Phase for the Determination of Total Dissolved Mercury in Natural Waters Using Atomic Fluorescence Spectrometry,&quot; Analytical Chemistry, vol. 81, pp. 3421-3428, May 1 2009. [52] T. Pradeep and Anshup, &quot;Noble metal nanoparticles for water purification: A critical review,&quot; Thin Solid Films, vol. 517, pp. 6441-6478, Oct 30 2009. [53] N. L. Rosi and C. A. Mirkin, &quot;Nanostructures in biodiagnostics,&quot; Chemical Reviews, vol. 105, pp. 1547-1562, Apr 2005. [54] P. Pattnaik, &quot;Surface plasmon resonance - Applications in understanding receptor-ligand interaction,&quot; Applied Biochemistry and Biotechnology, vol. 126, pp. 79-92, Aug 2005. [55] S. Link and M. A. El-Sayed, &quot;Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,&quot; Journal of Physical Chemistry B, vol. 103, pp. 4212-4217, May 27 1999. [56] S. K. Ghosh and T. Pal, &quot;Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications,&quot; Chemical Reviews, vol. 107, pp. 4797-4862, Nov 2007. [57] E. Norkus, I. Stalnioniene, and D. C. Crans, &quot;Interaction of pyridine- and 4-hydroxypyridine-2,6-dicarboxylic acids with heavy metal ions in aqueous solutions,&quot; Heteroatom Chemistry, vol. 14, pp. 625-632, 2003. [58] C. C. Huang and H. T. Chang, &quot;Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles,&quot; Chemical Communications, pp. 1215-1217, 2007. [59] Y. W. Lin, C. C. Huang, and H. T. Chang, &quot;Gold nanoparticle probes for the detection of mercury, lead and copper ions,&quot; Analyst, vol. 136, pp. 863-871, 2011. [60] C. W. Liu, Y. T. Hsieh, C. C. Huang, Z. H. Lin, and H. T. Chang, &quot;Detection of mercury(II) based on Hg(2+)-DNA complexes inducing the aggregation of gold nanoparticles,&quot; Chemical Communications, pp. 2242-2244, May 21 2008. [61] S. J. Chen and H. T. Chang, &quot;Nile red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation,&quot; Analytical Chemistry, vol. 76, pp. 3727-3734, Jul 1 2004. [62] H. X. Li and L. Rothberg, &quot;Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles,&quot; Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 14036-14039, Sep 28 2004.
本研究提出一結合金奈米粒子比色分析與微流體試紙元件之無機汞檢測平臺。研究利用表面沒有任何修飾的金奈米粒子,以及3-mercaptopropionic acid (MPA)對汞離子的專一吸附性或藉由單股寡核酸序列的結構改變,做為檢測無機汞的感應探針,免除複雜以及耗時的硫醇化或其他表面改質製作金奈米粒子生化感測探針的過程,此外並結合微流體試紙分析平臺,提供濃縮偵測樣品提高靈敏度,並同時記錄多個不同待測檢體檢測結果,接著利用手機傳輸至雲端計算得到檢測結果資料。利用此方法除了可免除需要昂貴的設備來進行高靈敏度數據分析,同時也具備平行多工病理判讀的功用。目前結果顯示本提出之汞分析平臺可以在一小時之內進行完無機汞的分析,並達到利用MPA –Au NPs偵測極限為750 nM, ss DNA-Au NPs 100 nM為偵測極限,吾人相信此平臺具備應用在資源匱乏地區進行即時汞汙染監控的可能性。

Colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for inorganic mercury detection in environment. Unmodified gold nanoparticles, 3-mercaptopropionic acid (MPA) and detection single-stranded deoxyribonucleic acid (ssDNA) are used to achieve rapid mercury ion sensing without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone.
The results show that the turnaround time is only1 hour, and the detection limit adopting MPA-Au NPs and ssDNA-Au NPs mixtures are 750 nM and 100 nM, respectively. We believe the proposed platform possesses the potential for on-site mercury pollution monitoring in resource constrained settings.
其他識別: U0005-1108201301233700
Appears in Collections:生醫工程研究所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.