Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3984
DC FieldValueLanguage
dc.contributor.advisor潘吉祥zh_TW
dc.contributor.advisorPin Hanen_US
dc.contributor.advisor韓斌zh_TW
dc.contributor.author張松濤zh_TW
dc.contributor.authorchang, sung taoen_US
dc.date2005zh_TW
dc.date.accessioned2014-06-06T06:26:46Z-
dc.date.available2014-06-06T06:26:46Z-
dc.identifier.urihttp://hdl.handle.net/11455/3984-
dc.description.abstract摘要 本論文針對Tilmans等人在2001年提出之電容並聯式射頻微機電開關做進一步的探討分析及設計製作的改良。針對此電容並聯式射頻微機電開關機械特性的分析與模擬方面,我們利用商用軟體ANSYS研究此電容並聯式射頻微機電開關的位移及自然共振頻率,之後以高頻電性軟體HFSS來模擬預測此射頻微機電開關之插入損耗及隔離特性。經由改良設計後,此微機電開關驅動電壓為15伏特,在40GHz操作頻率下,插入損失為0.9dB,隔離度在6.7~26.5GHz時皆大於20dB。在製作方面,我們利用微機電技術成功地將此射頻微機電開關由原本五道光罩製程,縮減成四道光罩製程,提升了製程的良率與減低製作成本。zh_TW
dc.description.abstractAbstract In this thesis, we present a improvement capacitive RF MEMS shunt switch which presented by Timans in 2001. After improving the design, we analyze and simulate of electricity and mechanical characteristic to this RF MEMS switch. In analysis and simulation, we use ANSYS to study displacement and nature resonance frequency, and HFSS to predict the insertion loss and isolation of the RF MEMS switch. The actuation voltage of the switch is 14V. The best rf performance shows insertion loss of less than 0.9dB for all frequencies up to 40GHz and isolation of greater than 20dB from 6.7GHz to 26.5GHz. In experiment, we successful use the MEMS technology to fabricate the RF MEMS switch reducing the processes from five masks to four masks.en_US
dc.description.tableofcontents目次 中文摘要.............................................................................................................Ⅰ 英文摘要.............................................................................................................Ⅱ 誌謝......................................................................................................................Ⅱ 目次......................................................................................................................Ⅳ 圖目次..................................................................................................................Ⅵ 表目次..................................................................................................................Ⅷ 第一章 諸 論 .....................................................................................................1 1-1 研究動機........................................................................................................2 1-2 文獻探討........................................................................................................2 1-3 本論文之研究目的及方法 .........................................................4 1-4論文組織............................................................................................... 4 第二章 射頻微機電開關之相關理論...............................................................5 2-1 簡介 ...............................................................................................................5 2-1-1 射頻電路組態分類..................................................................................6 2-1-2 機械結構分類..........................................................................................7 2-1-3 接觸形式分類..........................................................................................8 2-2 微機電開關的優缺點...................................................................................9 2-3 射頻微機電開關之模型.............................................................................13 2-3-1靜電驅動原理..........................................................................................13 2-3-2等效電路模型.........................................................................................15 2-3-3S-參數........................................................................................................18 2-3-4有限元素法..............................................................................................22 第三章 射頻微機電開關之模擬與分析......................................................24 3-1 射頻微機電開關之結構設計..................................................................24 3-2 射頻微機電開關之電性模擬分析............................................................26 3-2-1 電容切換比(Con/Coff Ratio)...................................................................26 3-2-2 介電層之特性分析................................................................................27 3-2-3 絕緣緩衝層之特性分析.......................................................................30 3-2-4橋型結構之特性分析.............................................................................32 3-2-5 間距(Gap)之特性分析..........................................................................33 3-2-6 集膚深度................................................................................................34 3-2-7 射頻微機電開關之電性分析..............................................................35 3-3 射頻微機電開關之力學模擬分析...........................................................37 3-3-1 位移特性分析.......................................................................................37 3-3-2 自然頻率分析.......................................................................................41 3-3-3 安全係數................................................................................................43 第四章 射頻微機電開關之製程與量測.........................................................45 4-1微機電技術簡介...........................................................................................45 4-2射頻微機電開關之製程流程......................................................................47 4-3射頻微機電開關之製程討論與改善.........................................................56 4-3-1 光罩對準標誌的對準...........................................................................56 4-3-2 鋁蝕刻液之蝕刻時間控制..................................................................57 4-3-3犠牲層的選擇與蝕刻方法的影響......................................................59 4-4測結果............................................................................................................64 4-4-1低頻量測.................................................................................................64 4-4-2高頻量測..................................................................................................66 第五章 結論.......................................................................................................70 圖目次 圖2.1無線通訊射頻模組前級架構..............................................................5 圖2.2 微機電開關通道示意圖.....................................................................6 圖2.3 射頻微機電開關概念圖(a)為串聯型式(b)為並聯型式.................7 圖2.4 懸臂型微開關......................................................................................7 圖2.5 橋型微開關..........................................................................................7 圖2.6 電阻式與電容式射頻微機電開關....................................................8 圖2.7 射頻微機電開關之等效模型..........................................................13 圖2.8 單位電壓與單位移的關係圖..........................................................14 圖2.9 電容式射頻微機電開關等效電路圖.............................................16 圖2.10 雙埠網路示意圖..............................................................................20 圖3.1 射頻微機電開關立體示意圖..........................................................24 圖3.2 橋型結構之尺寸.......................................................... ....................25 圖3.3 介電層厚度與電容切換比之關係..................................................27 圖3.4不同介電材料之插入損失對頻率之關係.......................................28 圖3.5不同介電材料之隔離度對頻率之關係...........................................29 圖3.6 介電層厚度之隔離度與頻率之關係..............................................29 圖3.7 絕緣緩衝層插入損失與頻率之關係..............................................31 圖3.8絕緣緩衝層隔離度頻率之關係........................................................31 圖3.9 不同橋型結構寬度之插入損失頻率之關係.................................32 圖3.10 不同橋型結構寬度之反射損失頻率之關係圖...........................33 圖3.11 不同間距之插入損失頻率之關係................................................34 圖3.12 微開關在關狀態之插入損失圖....................................................36 圖3.13 微開關在關狀態之反射損失圖....................................................36 圖3.14 微開關在開狀態之隔離特性圖....................................................37 圖3.15橋型懸浮結構之ANSYS 3D固態模型..........................................38 圖3.16橋型懸浮結構之ANSYS分割網格模型.......................................39 圖3.17電壓-位移之解析解與ANSYS模擬關係圖.................................40 圖3.18 施加電壓為13.6V之ANSYS模擬位移情形................................41 圖3.19 ANSYS橋型結構之共振頻率與位移關係圖...............................43 圖3.20 ANSYS模擬之von Mises stress等效應力圖..................................44 圖4.1 Tilmans等人發表之微開關結構.......................................................48 圖4.2 Tilmans等人發展之微開關製作流程..............................................49 圖4.3射頻微機電開關之製程流程圖.......................................................54 圖4.4 RIE蝕刻後之介電層結構................................................................54 圖4.5 CPW之結構層...................................................................................55 圖4.6 ICP蝕刻後之結構層.........................................................................55 圖4.7 微開關之結構....................................................................................55 圖4.8 Aligner Key之對位錯誤...................................................................56 圖4.9 Aligner Key對位錯誤導致結構之偏移情形.................................57 圖4.10 CPW結構之損壞.............................................................................58 圖4.11鋁蝕刻液工作溫為(a)90℃及(b)50℃之結構................................59 圖4.12 BOE蝕刻過度造成CPW結構之損壞..........................................60 圖4.13濕蝕刻之微開關結構SEM圖........................................................61 圖4.14 ICP乾蝕刻後之微開關結構上視圖..............................................62 圖4.15 ICP乾蝕刻後之微開關結構前視圖..............................................63 圖4.16 ICP 乾蝕刻未完全之微開關SEM切面圖..................................63 圖4.17雷射位移器與照相設備示意圖.....................................................64 圖4.18微開關施加驅動電壓之方式..........................................................65 圖4.19 驅動電壓微開關之變化................................................................66 圖4.20雷射位移器量測之電壓與位移之關係圖....................................66 圖4.21 微開關之高頻量測圖.....................................................................68 圖4.22微開關關狀態之插入損失高頻量測圖........................................68 圖4.23微開關開狀態之隔離度高頻量測圖............................................69 圖4.24Tilmans與本文微開關高頻量測比較圖.......................................70 表目次 表2-1 固態電子式微波開關與微機電開關之比較..................................9 表2-2 射頻微機電開關於通訊系統之應用.............................................12 表3-1 ANSYS模擬之鋁薄膜材料性質表..................................................38 表4-1 積體電路製程與微機電系統比較表.............................................46 表4-2 RCA 標準清洗步驟..........................................................................54 表5-1 本文與Tilmans等人之微開關性能比較表....................................71zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程研究所zh_TW
dc.subject射頻微機電zh_TW
dc.subjectRF MEMSen_US
dc.subject微開關zh_TW
dc.subjectswitchen_US
dc.title電容式射頻微機電開關之設計與製作zh_TW
dc.titleDesign and Fabrication of Capacitive RF MEMS Switchen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
Appears in Collections:精密工程研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.