Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3999
DC FieldValueLanguage
dc.contributor.advisor王國禎zh_TW
dc.contributor.advisorGou-Jen Wangen_US
dc.contributor.author秦志賢zh_TW
dc.contributor.authorChin, Vincenten_US
dc.date2001zh_TW
dc.date.accessioned2014-06-06T06:26:48Z-
dc.date.available2014-06-06T06:26:48Z-
dc.identifier.urihttp://hdl.handle.net/11455/3999-
dc.description.abstract灰階微透鏡光罩和一般曝光的光罩最大的不同處為曝光一次即可以產生三十二階的蝕刻深度,可應用於連續曲面形狀的多階繞射微光學元件與高填滿率(fill factor)之非球面微透鏡陣列之製作,在曝光顯影製程中,經由不同的塗佈光阻膜厚、曝光時間和顯影時間等操作參數的改變,可以製造出直徑不同(40 μm至60 μm)、高度不同(1.7 μm至6.8 μm)之非球面折射式微透鏡陣列。 本研究主要目的是探討以灰階(gray scale)光罩製作折射式非球面微透鏡陣列之製程模式,可分為二部份,第一部份乃是將UV-LIGA技術應用於灰階光罩折射式微透鏡之前段製程,在應用不同光阻下可完成64.5 μm、6.3 μm (AZ P4620)與51.3 μm、4.7 μm (ma-P V100)等不同高度與直徑之微透鏡陣列。經前段製程完成之半成品,以微電鑄加工及熱印壓模後,可完成繞射主葉強度大小佳,且聚焦性能良好,亦符合大量批製要求之折射式微透鏡光學陣列。 接著我們提出以類神經網路結合迴歸分析之二階段模式,來有效估測微透鏡表面輪廓。類神經網路主要是用來模擬微透鏡高度及直徑與製程參數之關係,而迴歸分析則是用來求取微透鏡表面輪廓方程式。以某組製程參數輸入訓練完成之類神經網路後,即可得出相對應之微透鏡直徑與高度。此一直徑與高度組即可決定微透鏡之表面輪廓。實驗結果證實本研究所發展之二階段式估測法則可有效估測微透鏡之表面輪廓。zh_TW
dc.description.abstractIn this thesis, the manufacturing processes of non-spherical refraction microlens array by gray-scale mask is investigated. Compare to the conventional multi-lithography manufacturing method, the gray-scale mask approach requires only a single step to fabricate a non-spherical refraction microlens array. In the first part of this research, we emphasize on the gray-scale mask based microlens array fabrication processes through the UV-LIGA approach. Influences of the process parameters such as photoresist thickness of spin coating, total time of exposing, and total time of developing to the quality of the final products are investigated. A 17×17 microlens array with lens diameter up to 60 μm, lens height up to 6.8 μm, focal length being 0.62 mm, and spot size up to 1.1 μm is successfully obtained. Furthermore, a two-stage process modeling scheme is proposed to reduce the time-consuming trail-and-error parameters tuning labors. At the first stage, a multi-layer feedforward neural-network is employed to model the relationships between the diameter and height of the microlens and the process parameters. Surface profile of a certain microlens with known diameter and height can be plotted through an empirical equation that is obtained by regressing analysis method. Experimental results show that the proposed two-stage scheme can precisely predict the surface profile of the gray-scale mask based microlens.en_US
dc.description.tableofcontents第一章 緒論 1 1.1 研究動機 1 1.2 研究目標 3 1.3 論文大綱 5 第二章 UV-LIGA灰階微透鏡陣列製程技術 6 2.1 微透鏡的發展與應用 10 2.1.1 微透鏡的發展 10 2.1.2 微透鏡的應用 12 2.1.3 微透鏡陣列的應用 13 2.2 灰階光罩原理與應用 15 2.2.1 灰階光罩簡介 15 2.2.2 灰階光罩製作技術 16 2.2.3 灰階光罩特性 18 2.2.4 實驗用灰階光罩規格簡介 18 2.3 MEMS製程技術 21 2.3.1 UV-LIGA製程技術 21 2.3.2 精密電鑄 23 2.3.3 熱印壓模 24 第三章 灰階微透鏡前段製程技術--UV-LIGA 27 3.1 實驗建構 28 3.2 測試與校準 31 3.3 實際微透鏡製作 38 3.3.1 製程參數與直徑、高度之對應關係 39 3.3.2 試片經微影鍍金後光學干涉儀檢測之結果 41 3.4 製程參數對折射式微透鏡表面輪廓之影響 43 3.4.1 製程參數對透鏡直徑與高度之影響 43 3.4.2 透鏡直徑及高度與透鏡表面輪廓之關係 45 3.5 測試實驗 49 3.5.1 類神經網路模型 49 3.5.2 表面輪廓之結果與真實之比 50 第四章 灰階微透鏡之後段製程技術 51 4.1 精密電鑄 51 4.1.1 步驟與方法 51 4.4.2 實驗結果 52 4.2 熱印壓模 54 4.2.1 實驗結果 55 4.3 光學特性檢測 56 4.3.1 焦平面測量 56 4.3.2 焦平面品質分析 57 第五章 結論 59 參考文獻 61 附錄 64zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程研究所zh_TW
dc.subjectrefraction microlens arrayen_US
dc.subject折射式微透鏡陣列zh_TW
dc.subjectgray-scale masken_US
dc.subjectUV-LIGAen_US
dc.subjectneural-networken_US
dc.subject灰階光罩zh_TW
dc.subjectUV-LIGA製程zh_TW
dc.subject類神經網路zh_TW
dc.title灰階光罩於非球面折射式微透鏡之製作研究zh_TW
dc.titleA Study on Fabrication of Non-spherical Refraction Microlens Array by Gray-scale Masken_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.