Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4022
DC FieldValueLanguage
dc.contributor.advisor洪瑞華zh_TW
dc.contributor.author饒益侖zh_TW
dc.contributor.authorRao, Yi-Lunen_US
dc.contributor.other中興大學zh_TW
dc.date2006zh_TW
dc.date.accessioned2014-06-06T06:26:50Z-
dc.date.available2014-06-06T06:26:50Z-
dc.identifier.urihttp://hdl.handle.net/11455/4022-
dc.description.abstract對紅色發光二極體(LED)而言,由於晶格常數之要求,通常將發光材料磷化鋁銦鎵成長於砷化鎵基板上。但砷化鎵具有吸光及散熱不佳之缺點,早期係以金屬晶圓接合之方式將磊晶膜貼合於散熱基板,再移除砷化鎵基板,以解決具吸光效果且散熱不佳之缺點,以此方法所製作之元件皆屬p-side down結構LED,其將會犧牲以磷化鎵作為良好窗口層之優點。 本論文使用二次晶圓貼合技術將磊晶膜透過一透明黏著層並以p-side up之形態轉移至具金屬反射鏡面且熱導係數較高之矽基板上,期望能使磷化鎵窗口層朝上且金屬鏡面不需經過高溫熱處理可維持其高反射率,而有效提昇發光二極體之亮度。吾人將分別製作p-side up及p-side down結構之磷化鋁銦鎵發光二極體,並針對其光、電特性及熱散逸能力於兩者間相互比較。 經二次晶圓貼合後,元件之電性仍可處於正常工作之範圍, p-side up LED若以銀為金屬鏡面時於注入電流300 mA可獲得最佳之光強度約5453 mcd及光輸出功率51 mW。另外,於p-side up及p-side down LED之比較,可清楚得知p-side up LED於光特性之表現較優於p-side down LED。但其於熱散逸之能力則較差於p-side down LED.zh_TW
dc.description.abstractFor red LEDs, the AlGaInP epitaxy layer are commonly grown on GaAs substrate (sub.) for lattice constant matching requirement. But GaAs sub. is an absorbing substrate for visible light and low thermal-conductivity material. In the past, epitaxy layer transferred to a thermal-dissipation substrate by wafer bonding technique and removed GaAs sub. for solving light absorbing and low thermal-conductivity. It would be formed a p-side down structure, which could not use GaP as a good window layer. In this thesis, we used twice wafer bonding technique to transfer epitaxy layers to a higher thermal conductivity substrate with metal reflective mirror by a transparent adhesion and formed p-side up LED structure. We fabricated p-side up and p-side down AlGaInP LEDs, respectively, and compared with optical-electral characteristics and thermal-dissipation ability. P-side up LEDs always work well after twice wafer bonding. When injection current is 300 mA , it could obtained the best brightness 5453 mcd and light output power 51 mW by Ag mirror. P-side up LEDs are better than p-side down LEDs on optical characteristics, but its thermal conductivity ability is worse than p-side down LEDs.en_US
dc.description.tableofcontents封面內頁 簽名頁 授權書 誌謝 iv 中文摘要 v Abstract vi 目錄 vii 圖目錄 x 表目錄 xiii 第一章 概論 1 1-1 發光二極體之發展 1 1-2發光二極體磊晶成長條件及改善瓶頸之方法 2 1-3 現有發光二極體之缺點及本論文研究方向 3 1-3-1 現有發光二極體之缺點 3 1-3-2 本論文之改良與創新 4 第二章 發光二極體理論模型簡介 6 2-1 光電特性 6 2-2 金屬與半導體之接觸 8 2-3 溫度之影響 10 2-4 發光二極體之發光機制 11 第三章 元件之製程介紹 14 3-1前言 14 3-1 LED元件製程 14 3-2-1 晶片清洗 14 3-2-2 平台蝕刻 15 3-2-3 p型金屬歐姆接觸之製作 15 3-2-4 n型金屬歐姆接觸之製作 17 3-2-5 金屬電極之製作 17 3-2-6 LED與暫時基板之黏貼 18 3-2-7 吸光基板之去除 19 3-2-8 永久基板之黏貼 19 3-2-9 玻璃暫時基板之去除 20 3-2-10 元件切割、打線、封裝 20 第四章 結果與討論 21 4-1 前言 21 4-2 氧化銦錫(ITO)透明導電層之應用 21 4-2-1 ITO薄膜之製備及基本特性 21 4-2-2 ITO對電流擴散之影響 22 4-2-3 ITO對光強度之影響 23 4-2-4 ITO對光輸出功率之影響 23 4-3 鏡面位置對光強度之影響 24 4-4 不同鏡面金屬對光強度之影響 25 4-5 元件電性之探討 26 4-6 p-side up LED與p-side down LED之特性比較 27 4-6-1 元件電性之比較 28 4-6-2 元件光強度之比較 29 4-6-3 熱對元件之影響 30 4-6-4 光輸出功率及發光效率之比較 31 第五章 結論 33 參考文獻 34zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.subjectAlGaInPen_US
dc.subject磷化鋁銦鎵zh_TW
dc.subjectGaAsen_US
dc.subjectmetal wafer bondingen_US
dc.subjectp-side downen_US
dc.subjectmetal reflective mirroren_US
dc.subjecttwice wafer bonding techniqueen_US
dc.subjectp-side upen_US
dc.subject砷化鎵zh_TW
dc.subject金屬晶圓接合技術zh_TW
dc.subjectp-side downzh_TW
dc.subject金屬反射鏡面zh_TW
dc.subject二次晶圓貼合技術zh_TW
dc.subjectp-side upzh_TW
dc.title以二次晶圓接合技術研製具金屬反射鏡面之p-sideup高亮度磷化鋁銦鎵發光二極體zh_TW
dc.titleHigh-brightness AlGaInP/mirror/Si LEDs with p-side up structure fabricated by twice wafer bonding techniqueen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.