Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4032
DC FieldValueLanguage
dc.contributor張守一zh_TW
dc.contributor徐海文zh_TW
dc.contributor.advisor林佳鋒zh_TW
dc.contributor.author陳炳宏zh_TW
dc.contributor.authorChen, Ping-Hungen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:26:51Z-
dc.date.available2014-06-06T06:26:51Z-
dc.identifierU0005-0202200711050100zh_TW
dc.identifier.citation[1] I. Eliashevich, Y. Li, A.Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek, Jr., Proc. SPIE 3621, 28, (1999). [2] S. Nakamura, T. Mukai, and M.Senoh, Appl. Phys. Lett.64, 1687, (1994). [3] D. A. Vanderwater, I. H. Tan, G. E. Hoefler, D. C. Defevere, and F. A. Kish, “High-Brightness AlGaInP Light-Eemitting Diodes, ” Proc. IEEE, vol. 85, pp. 1752-1764, Nov, (1997). [4] X. Guo and E. F. Schuberta, “Current Crowding in GaN/InGaN Light Emitting Diodes on Insulating Substrates,” J. Appl. Phys. vol. 90, no. 8, pp. 4192-4195, (2001). [5] C.Huh, S. W. Kim, H. S. Kim, H. M. Kim, H. Hwang, and S. J. Park, Appl. Phys. Lett. 78, 1766, (2001). [6] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Park, and H. Hwanga, “Modeling of a GaN-based light-emitting diode for uniform current spresding,” Appl. Phys. Lett. vol. 77, no. 12, pp. 1903-1905, (2000). [7] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Schere, “30% External Quantum Efficiency from Surface Textured, Thin-Film Light-Emitting Diodes,” Appl. Phys. Lett. vol. 63, no. 16, pp. 2174-2176, (1993). [8] 李家銘,“氮化鎵發光二極體之研製,” 國立中央大學電機工程所, 台灣, (2003). [9] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in Light-Output Efficiency of InGaN/GaN Multiple-Quantum Well Light-Emitting Diodes by Current Blocking Layer,” Appl. Phys. Vol. 92, no. 5, September, (2002). [10] C. M. Lee, C. C. Chuo, Y. C. Liu, I. L. Chen,and J. I. Chyi, “InGaN-GaN MQW LEDs With Current Blocking Layer Formed By Selective Activation,” IEEE, vol. 25, no. 6, June, (2004). [11] C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. M. Chen, “Improved Light-Output Power of GaN LEDs by Selective Region Activation,” IEEE, vol. 16, no. 6, June, (2004). [12] Chia-Feng Lin, “High-Efficiency InGaN Light-Emitting Diode Via Didewall Selective Etching and Oxidation,” Journal of The Electrochemical Society, 153, 1, G39-G43, (2006). [13] Bahaa E. A. Saleh, Marlvin Carl Teich, “Fundamentals of Photonics,” John Wiley & Sons, Inc, (1997). [14] 史光國, “半導體發光二極體及固體照明,” 初版, 7-72, 台北, 全華科技圖書股份有限公司, (2005). [15] 史光國, “現代半導體發光及雷射二極體材料技術,” 初版, 40-115, 台北, 全華科技圖書股份有限公司, (2001). [16] 杜文杰, “P-型氮化鎵歐姆接觸之研究與氮化鎵光檢測器之製作,” 國立成功大學微電子工程研究所, 台灣, (2004). [17] 陳靜茹, “氮化鎵藍光發光二極體增強光強度之研究,” 國立中山大學電機工程研究所, 台灣, (2003).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4032-
dc.description.abstract本實驗探討電流阻擋層對氮化銦鎵發光元件之亮度增益影響。利用蒸鍍與蝕刻的方式直接在氮化鎵發光元件平台上之電極相對位置下方製作二氧化矽電流阻擋層。此技術是利用阻擋層之絕緣特性,使電流不直接由電極接觸往下灌,強迫電流在透明導電層更均勻擴散而往下注入P型氮化鎵表面。利用阻擋層對元件亮度增益依元件電極配置不同分別有15%(對角排列)及30%(直線排列)之亮度提升。並針對阻擋層對元件光電特性的影響進行分析,實驗中設計不同光罩,探討電流密度與有效面積對亮度、波長、外部量子效率等的影響,並在電極下方成長金屬反射層加以討論,分析P型金屬對發光效率提升與導入量產可行性評估。zh_TW
dc.description.abstractIn this thesis, the output power enhancement of the InGaN-based light-emitting diode was discussed by adding the current blocking layer. The SiO2 current blocking layer was defined on the mesa region under the p-type electrode. The injection current was blocked at the p-type electrode region, and the current was spread uniformly into the ITO transparent metal layer without p-electrode region. The output power enhance ratio of the LEDs with current blocking layer are 15% of electrodes diagonal arranged LEDs and 30% of electrodes linear arranged LEDs. The optical property of emission wavelength and external quantum efficiency on the current blocking LEDs were discussed by varying the mesa pattern design, electrode arrangement, and current density. Emission efficiency and mass production ability of the LED devices with metal reflectance layer and current blocking layer were also discussed in this thesis.en_US
dc.description.tableofcontents第一章 緒論..........................................1 1-1 發光二極體概要................................... 1 1-2 研究動機..........................................2 1-3 論文架構..........................................3 第二章 發光二極體元件相關原理與製作儀器 ..................4 2-1 透明導電層ITO ....................................4 2-2 電流擴散機制......................................4 2-3 電流阻擋結構(阻擋層厚度、材料、製程之探討)........5 2-3-1 阻擋層之材料................................6 2-3-2 阻擋層之厚度與面積..........................6 2-3-3 電流阻擋層之製程............................6 2-4 發光二極體電特性概要..............................7 2-4-1 順向電壓....................................7 2-4-2 逆向電壓....................................8 2-4-3 崩潰........................................8 2-4-4 抗靜電能力(ESD) ............................9 2-5 光取出原理........................................9 2-5-1 作用層之光發散原理..........................9 2-5-2 光衰退機制.................................10 2-5-3 增加光取出方法.............................11 2-6 電子束蒸鍍機.....................................13 2-7 快速升溫爐.......................................14 2-8 感應式耦合電漿(Inductively Coupled Plasma) ..........14 2-9 O2-PLASMA ......................................15 第三章 增加氮化鎵發光二極體外部量子效率之實驗設計 .......16 3-1 前言.............................................16 3-2 LED元件的製作...................................16 3-2-1 SAMPLE-A:對照組,透明導電層不開孔,無阻擋層之元件製作.....................................17 3-2-2 SAMPLE-B 在透明導電層不開孔下,成長阻擋層之元件...........................................19 3-2-3 SAMPLE-C:透明導電層開孔無阻擋層之元件......20 3-2-4 SAMPLE-D:透明導電層開孔成長阻擋層之元件....20 3-3 四種不同製程量測分析.............................20 3-3-1 電流-電壓特性之比較 .......................20 3-3-2 逆向電壓-電流特性之比較 ...................21 3-3-3 電流-亮度特性之比較 .......................21 3-3-4 外部量子效率分析...........................23 3-3-5 成長反射層對發光波長之探討.................23 3-4 發光二極體改變尺寸之探討.........................24 3-4-1 發光二極體之操作電壓特性...................24 3-4-2 發光二極體之亮度對不同尺寸元件之比較.......25 3-4-3 電流密度對操作電壓特性-大小尺寸之比較......26 3-4-4 電流密度對電激發光亮度之比較-改變尺寸......27 3-5 結合反射層之探討.................................27 3-5-1 結合反射層亮度對不同尺寸元件之比較.............27 3-5-2 結合反射層亮度對不同尺寸元件之比較.............28 第四章 結論 .............................................30 4-1 四種製程之優劣比較...............................30 4-2 元件面積的影響...................................31 4-3 阻擋層加反射層效益加乘...........................32 4-4 導入量產的可行性.................................33 第六章 參考文獻 .........................................34zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0202200711050100en_US
dc.subjectCurrent Blocking Layeren_US
dc.subject電流阻擋層zh_TW
dc.subjectIndium Gallium Nitride(InGaN)en_US
dc.subjectCurrent Densityen_US
dc.subject氮化銦鎵zh_TW
dc.subject電流密度zh_TW
dc.title具電流阻擋層高效率氮化銦鎵發光二極體之研究zh_TW
dc.titleThe high-efficiency InGaN-based Light-Emitting Diode With Current Blocking Layeren_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.