Please use this identifier to cite or link to this item:
標題: 基於卡門渦列之壓電式獵能器的設計與分析
Design and analysis for a piezoelectric energy harvester base on the Karma vortex street
作者: 黃彥斌
Huang, Yen-Bin
關鍵字: Piezoelectric energy harvester;壓電能量收集器;Vibration;Karman vortex street;Micro system;振動;卡門渦列;微系統
出版社: 精密工程學系所
引用: 王柏村,1996年,振動學,全華科技圖書股份有限公司。 甘堯江,2009年6月,應用於環境監測之無線感測網路閘道器設計,水保技術期刊(173-179)。 周卓明,1993年,壓電力學,全華科技圖書股份有限公司出版(P2-P25)。 吳朗,1994年,電子陶瓷-壓電,全欣資訊圖書。 華健、吳怡萱,2008年,再生能源概論,五南圖書出版有限公司。 鄭世裕,2008年11月,環境能量擷取技術、潔淨能源新方向,工業材料雜誌263期。 劉乃仁,2010年7月,剪力式壓電能量擷取器,中興大學,碩士論文。 羅卓錚,2004年6月,擋體式無閥門微幫浦之數值模擬,臺灣大學,碩士論文。 (IDTechEx) Bergander A., Driesen W., Varidel T., Bregust J.M., (2003), Monolithic piezoelectric push-pull actuators for inertial drives, Proceedings of International Symposium on Micromechatronics and Human Science, pp. 309 - 316. Chiara Buratti., Andrea Conti., Davide Dardari., Roberto Verdone., An Overview on Wireless Sensor Networks Technology and Evolution, Sensors 2009, 9, 6869-6896 Tritton D.J., (1995), Physical Fluid Dynamics, Oxford University Press, ISBN 0-19-854493-6 p25 Fox R.W., Kline S.J., (1962), Flow regime data and design methods for curved subsonic diffusers, Journal of Basic Engineering, Vol.84, pp. 303-312,. Goldstein S., (1995), Modern Developments in Fluid Dynamics, Vols, ⅠandⅡ.Oxford: Clarendon Press. (Reprinted in paperback by Dover, New York, 1967.) Gonzáleza A.H.M., Zaghete M.A., Cilensea M., Stojanovic B.D., (2001), Influence of viscosity and ionic concentration on morphology of PZT thin films, Key Engineering Materials (Volumes 206 - 213). Hu J. H., Li H. L., Chan H. L., Choy C. L., (2001), A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode, Sensors and Actuators A: Physical, Vol. 88, pp. 79 - 86. Kaneko T., Ohmi T., Ohya N., Kawahara,Hattori N., A new, (1997), compact and quick-response dynamic focusing lens, Proceedings of International Conference on Solid State Sensors and Actuators, Vol. 1, pp. 63 – 66. Koc B., Alkoy S., Uchino K., (1999), A circular piezoelectric transformer with crescent shape input electrodes, Proceedings of IEEE Ultrasonics Symposium,Vol. 2, pp. 931 - 934. Kolesar E.S.Jr., Dyson, C. S., (1995), Object imaging with a piezoelectric robotic tactile sensor, Journal of Microelectromechanical Systems, Vol. 4, pp. 87- 96. Kulah H., Najafi K., (2004), An electromagnetic micro power generator for low frequency environmental vibrations, 17th IEEE International Conference on MEMS. Kwon O.D., Yoo J.S., Yun Y.J., Lee J.S., Kang S.H., Lin, K.J., (2005), A research on the piezoelectric vibration actuator for mobile phone, Proceedings of nternational Symposium on Electrical Insulating Materials, Vol. 3, pp. 676 - 678. Kymissis J., Kendall C., Paradiso J., Gershenfeld N., (1998), Parasitic power harvesting in shoes, Second IEEE International Conference on Wearable Computing, pp.132-139. Lee J.S., Lee Y.H., Chai H.I., Yoon M.S., Lim K.J., (2001), The characteristics of new piezoelectric ballast for fluorescent T8 lamp, Proceedings of IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 947 - 951. Lefeure E., Badel A., Richard C., Guyomar D., (2004), High performance piezoelectric vibration energy reclamation, Proceedings of SPIE, Vol. 5390, p.379-387. Lesieutre G.A., Ottman G K. and Hofmann H. F., (2004), Damping as a result of piezoelectric energy harvesting, Journal Of Sound And Vibration, 269, p.991-1001. Li H. L., Hu J. H., Chain H. L., (2002), Finite element analysis on piezoelectric ring transformer, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 2, pp. 1177 - 1180. Marron P.J., Karnouskos S., Minder D., (2011), The Emerging Domain of Cooperating Objects, Springer. Michael McGrath., Terrance J.D., (2010),Wireless sensor networks for healthcare applications, Artech House. Nashif A. D., Jones D.I.G., Henderson J. P., (1985), Vibration damping , A Wiley-Interscience Publication, pp.117-154. Onoda Makihara., Kanjuro Minesugi., Kenji., (2003), Energy-recycling semi-active method for vibration suppression with piezoelectric transducer, AIAA Paper, 2003-1869. Ottman G.K., Hofmann H.F., Lesieutre G.A., (2003), Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode, IEEE Transactions on Power Electronics , vol. 18, no. 2, pp. 696-703 Priya S., Chen C.T., Fye D., Zahnd J., (2005), Piezoelectric windmill: a novel solution to remote sensing, Japanese Journal of Applied Physics, Vol.44, No.3, pp.104-107. Ravariu C., Ravariu F., Rusu A., Dobrescu D., Dobrescu L., Popa C., Chiran I., (2002), A new job for the pseudo-MOS transistor: working in the pressure sensors field, Proceedings of the 9th International Conference on Electronics, Circuits and Systems, Vol. 1, pp. 215 - 218. Ramsay, Clark, Michael J., William W., (2001), Piezoelectric energy harvesting for biomems application, Proceedings of SPIE, Vol.4332, pp. 429-438. Shenck N.S.A., (1999), Demonstration of useful electric energy generation from piezoceramics in a shoe, the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the MIT. Starner T., (1996), Human-powered wearable computing, IBM Systems Journal, Vol. 35, No 3-4, pp. 618-629. Taylor G.W., Burns J.R., Kammann S.M., Powers W.B., Welsh T.R., (2001), The energy harvesting eel: a small subsurface ocean/river power generator, IEEE Journal of Oceanic Engineering, Vol.26, No.4. Torresl E.O., Rincon-Mora G.A., Long lasting., (2005), self-sustaining and energy-harvesting system-in-package (SIP) wireless micro-sensor solution, International Conference on Energy, Environment and Energy-Harvesting Disasters (INCEED 2005), Charlotte, North Carolina, USA,. White, Frank M., (1999). Fluid Mechanics (4th ed.). McGraw Hill. ISBN 0071168486.

The demand for self-powered embedded and remote microsystems is increasing. In this thesis, a micro piezoelectric energy harvester is developed. The operation is base on flow induced vibration. A bluff body is embedded in a micro water channel and pressure fluctuation is generated behind the bluff body. The energy harvester harnesses energy from the Karma vortex street behind bluff bodies. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric plate.
In this study, computational fluid dynamics (CFD) module and solid structural module of Ansys are used to analyze the pressure fluctuation and the mechanical behavior of the device, respectively. The arrangement of single and dual bluff bodies are investigated. A novel design of the energy harvester is developed. Finally, the fabrication steps and experimental set up for the micro energy harvester based on the new design is proposed.
其他識別: U0005-0602201210051100
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.