Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4035
DC FieldValueLanguage
dc.contributor林哲信zh_TW
dc.contributorChe-Hsin Linen_US
dc.contributor洪振義zh_TW
dc.contributorZhen-Yi Hongen_US
dc.contributor.advisor王東安zh_TW
dc.contributor.advisorDung-An Wangen_US
dc.contributor.author黃彥斌zh_TW
dc.contributor.authorHuang, Yen-Binen_US
dc.contributor.other中興大學zh_TW
dc.date2013zh_TW
dc.date.accessioned2014-06-06T06:26:52Z-
dc.date.available2014-06-06T06:26:52Z-
dc.identifierU0005-0602201210051100zh_TW
dc.identifier.citation王柏村,1996年,振動學,全華科技圖書股份有限公司。 甘堯江,2009年6月,應用於環境監測之無線感測網路閘道器設計,水保技術期刊(173-179)。 周卓明,1993年,壓電力學,全華科技圖書股份有限公司出版(P2-P25)。 吳朗,1994年,電子陶瓷-壓電,全欣資訊圖書。 華健、吳怡萱,2008年,再生能源概論,五南圖書出版有限公司。 鄭世裕,2008年11月,環境能量擷取技術、潔淨能源新方向,工業材料雜誌263期。 劉乃仁,2010年7月,剪力式壓電能量擷取器,中興大學,碩士論文。 羅卓錚,2004年6月,擋體式無閥門微幫浦之數值模擬,臺灣大學,碩士論文。 http://www.giichinese.com.tw/publisher/IX.shtml (IDTechEx) Bergander A., Driesen W., Varidel T., Bregust J.M., (2003), Monolithic piezoelectric push-pull actuators for inertial drives, Proceedings of International Symposium on Micromechatronics and Human Science, pp. 309 - 316. Chiara Buratti., Andrea Conti., Davide Dardari., Roberto Verdone., An Overview on Wireless Sensor Networks Technology and Evolution, Sensors 2009, 9, 6869-6896 Tritton D.J., (1995), Physical Fluid Dynamics, Oxford University Press, ISBN 0-19-854493-6 p25 Fox R.W., Kline S.J., (1962), Flow regime data and design methods for curved subsonic diffusers, Journal of Basic Engineering, Vol.84, pp. 303-312,. Goldstein S., (1995), Modern Developments in Fluid Dynamics, Vols, ⅠandⅡ.Oxford: Clarendon Press. (Reprinted in paperback by Dover, New York, 1967.) Gonzáleza A.H.M., Zaghete M.A., Cilensea M., Stojanovic B.D., (2001), Influence of viscosity and ionic concentration on morphology of PZT thin films, Key Engineering Materials (Volumes 206 - 213). Hu J. H., Li H. L., Chan H. L., Choy C. L., (2001), A ring-shaped piezoelectric transformer operating in the third symmetric extensional vibration mode, Sensors and Actuators A: Physical, Vol. 88, pp. 79 - 86. Kaneko T., Ohmi T., Ohya N., Kawahara,Hattori N., A new, (1997), compact and quick-response dynamic focusing lens, Proceedings of International Conference on Solid State Sensors and Actuators, Vol. 1, pp. 63 – 66. Koc B., Alkoy S., Uchino K., (1999), A circular piezoelectric transformer with crescent shape input electrodes, Proceedings of IEEE Ultrasonics Symposium,Vol. 2, pp. 931 - 934. Kolesar E.S.Jr., Dyson, C. S., (1995), Object imaging with a piezoelectric robotic tactile sensor, Journal of Microelectromechanical Systems, Vol. 4, pp. 87- 96. Kulah H., Najafi K., (2004), An electromagnetic micro power generator for low frequency environmental vibrations, 17th IEEE International Conference on MEMS. Kwon O.D., Yoo J.S., Yun Y.J., Lee J.S., Kang S.H., Lin, K.J., (2005), A research on the piezoelectric vibration actuator for mobile phone, Proceedings of nternational Symposium on Electrical Insulating Materials, Vol. 3, pp. 676 - 678. Kymissis J., Kendall C., Paradiso J., Gershenfeld N., (1998), Parasitic power harvesting in shoes, Second IEEE International Conference on Wearable Computing, pp.132-139. Lee J.S., Lee Y.H., Chai H.I., Yoon M.S., Lim K.J., (2001), The characteristics of new piezoelectric ballast for fluorescent T8 lamp, Proceedings of IEEE International Symposium on Industrial Electronics, Vol. 2, pp. 947 - 951. Lefeure E., Badel A., Richard C., Guyomar D., (2004), High performance piezoelectric vibration energy reclamation, Proceedings of SPIE, Vol. 5390, p.379-387. Lesieutre G.A., Ottman G K. and Hofmann H. F., (2004), Damping as a result of piezoelectric energy harvesting, Journal Of Sound And Vibration, 269, p.991-1001. Li H. L., Hu J. H., Chain H. L., (2002), Finite element analysis on piezoelectric ring transformer, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 2, pp. 1177 - 1180. Marron P.J., Karnouskos S., Minder D., (2011), The Emerging Domain of Cooperating Objects, Springer. Michael McGrath., Terrance J.D., (2010),Wireless sensor networks for healthcare applications, Artech House. Nashif A. D., Jones D.I.G., Henderson J. P., (1985), Vibration damping , A Wiley-Interscience Publication, pp.117-154. Onoda Makihara., Kanjuro Minesugi., Kenji., (2003), Energy-recycling semi-active method for vibration suppression with piezoelectric transducer, AIAA Paper, 2003-1869. Ottman G.K., Hofmann H.F., Lesieutre G.A., (2003), Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode, IEEE Transactions on Power Electronics , vol. 18, no. 2, pp. 696-703 Priya S., Chen C.T., Fye D., Zahnd J., (2005), Piezoelectric windmill: a novel solution to remote sensing, Japanese Journal of Applied Physics, Vol.44, No.3, pp.104-107. Ravariu C., Ravariu F., Rusu A., Dobrescu D., Dobrescu L., Popa C., Chiran I., (2002), A new job for the pseudo-MOS transistor: working in the pressure sensors field, Proceedings of the 9th International Conference on Electronics, Circuits and Systems, Vol. 1, pp. 215 - 218. Ramsay, Clark, Michael J., William W., (2001), Piezoelectric energy harvesting for biomems application, Proceedings of SPIE, Vol.4332, pp. 429-438. Shenck N.S.A., (1999), Demonstration of useful electric energy generation from piezoceramics in a shoe, the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science at the MIT. Starner T., (1996), Human-powered wearable computing, IBM Systems Journal, Vol. 35, No 3-4, pp. 618-629. Taylor G.W., Burns J.R., Kammann S.M., Powers W.B., Welsh T.R., (2001), The energy harvesting eel: a small subsurface ocean/river power generator, IEEE Journal of Oceanic Engineering, Vol.26, No.4. Torresl E.O., Rincon-Mora G.A., Long lasting., (2005), self-sustaining and energy-harvesting system-in-package (SIP) wireless micro-sensor solution, International Conference on Energy, Environment and Energy-Harvesting Disasters (INCEED 2005), Charlotte, North Carolina, USA,. White, Frank M., (1999). Fluid Mechanics (4th ed.). McGraw Hill. ISBN 0071168486.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4035-
dc.description.abstract為提供微小系統元件具自生性之微型能量供應的需求,本文擬研究一種由流體引起振動之壓電式獵能器,並設計可引起流場壓力變動的微流道,故此獵能器的主要作動方式係以一穩定的重力流流入微流道內,並在其內置一鈍體,藉由水流流過此鈍體後,產生卡門渦列導致結構振動。而後獵能器再透過結構振動產生的壓電效應將流體動能轉換成電能。 本研究使用國家高速網路與計算中心(NCHC)所提供的ANSYS分析軟體來進行模擬,我們利用其流體動力學分析模組分析流場行為,也利用其有限元素模組分析結構受到外力負載後所呈現的反應,例如位移、應力、電壓...等。依據模擬分析的結果設計微型獵能器,最後提出相關的製程與實驗建議。zh_TW
dc.description.abstractThe demand for self-powered embedded and remote microsystems is increasing. In this thesis, a micro piezoelectric energy harvester is developed. The operation is base on flow induced vibration. A bluff body is embedded in a micro water channel and pressure fluctuation is generated behind the bluff body. The energy harvester harnesses energy from the Karma vortex street behind bluff bodies. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric plate. In this study, computational fluid dynamics (CFD) module and solid structural module of Ansys are used to analyze the pressure fluctuation and the mechanical behavior of the device, respectively. The arrangement of single and dual bluff bodies are investigated. A novel design of the energy harvester is developed. Finally, the fabrication steps and experimental set up for the micro energy harvester based on the new design is proposed.en_US
dc.description.tableofcontents誌謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 動機 1 1.2 研究背景 2 1.3 文獻回顧 5 1.4 論文架構 7 第二章 理論基礎與作動原理 15 2.1 設計概念 15 2.2 作動原理 15 2.3 擴散器與噴嘴設計理論 15 2.4 馮卡門渦列理論 17 2.5 壓電理論 19 第三章 數值分析 26 3.1 流場分析 26 3.2 壓電方程式 27 3.3 獵能器的數值模型與分析結果 29 3.3.1 數據處理與分析 30 3.3.2 參數設計與分析 30 3.3.3 小結 32 第四章 製程設計與實驗規劃 44 4.1 製程設計概論 44 4.1.1 微流道製程 44 4.1.2 壓電振子製程 44 4.1.3 上蓋板製程 45 4.1.4 獵能器組裝流程 46 4.2實驗架設規劃 46 4.3實驗量測方法 46 第五章 結論 50 5.1 結果與討論 50 5.2 未來商業潛力 51 參考文獻 52zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0602201210051100en_US
dc.subjectPiezoelectric energy harvesteren_US
dc.subject壓電能量收集器zh_TW
dc.subjectVibrationen_US
dc.subjectKarman vortex streeten_US
dc.subjectMicro systemen_US
dc.subject振動zh_TW
dc.subject卡門渦列zh_TW
dc.subject微系統zh_TW
dc.title基於卡門渦列之壓電式獵能器的設計與分析zh_TW
dc.titleDesign and analysis for a piezoelectric energy harvester base on the Karma vortex streeten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.