Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4039
DC FieldValueLanguage
dc.contributor吳威德zh_TW
dc.contributorWei-Te Wuen_US
dc.contributor黃德劭zh_TW
dc.contributorDe-Shau Huangen_US
dc.contributor.advisor林明澤zh_TW
dc.contributor.advisorMing-Tzer Linen_US
dc.contributor.author林彥廷zh_TW
dc.contributor.authorLin, Yen-Tingen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:26:52Z-
dc.date.available2014-06-06T06:26:52Z-
dc.identifierU0005-1108201117511900zh_TW
dc.identifier.citation[1]. KR脫硫攪拌器的技術現狀與發展方向,中國分類號:TF713.3文獻標示碼:B,文章編號: 1008-4371(2005)05-0054-05 [2]. KR脫硫攪拌器用修補料的研製,NA HUO CA LIAO/耐火材料 2007,41(4)278~280,286 [3]. 脫硫攪拌頭破損機理的研究與實踐,武鋼技術 WISCO TECHNOLOGY,第47卷第2期(2009年4月) [4]. KR脫硫攪拌器的技術現狀與發展方向WISCO TECHNOLOGY 2005,43 (5) [5]. 武鋼二煉鋼KR鐵水脫硫生產實踐,煉鋼,2005年10月,第21卷第5期 [6]. 錨固件在不定形耐火材料中的應用,NA HUO CA LIAO/耐火材料2005,(4) 314~315 [7]. 鐵水脫硫噴槍內部架構對熱應力的影響,煉鋼,第21卷第3期(2005年6月) [8]. KR攪拌技術的水模型實驗研究,工業爐,第29卷第1期,2009年1月 [9]. 鐵水預處理KR攪拌頭用澆注料的研製,山東冶金,第29卷增刊,2007年3月 [10]. KR脫硫攪拌頭用耐火澆注料的研製與應用,耐火材料,2008, 42(4)285~287 [11]. 粒度組成對KR攪拌頭澆注料性能的影響,武漢科技大學學報, 第32卷第3期(2009年6月) [12]. KR法脫硫主體設備介紹及有關計算,煉鋼,2002年8月,第18卷第4期(上海寶山鋼鐵集團) [13]. Effect of Baffles on the Mixing of Liquid and Particles in a Mechanically Stirred Vessel,(ISIJ),Tetsu-to-Hagane Vol. 90 (2004) No.6. [13]. Laundre,B.E.,and Spalding,D.B.,“Mathematical Models of Turbulent Flows,”Chap.5,PP.90-100,Academic,London,1972. [14]. Batchelor ,G. K., An introduction to fluid dynamics, Cambridge, U.K. ; New York, NY : Cambridge University(2002) [15]. Kruger, Marcelo.,Kirmse, Odair Jose.,Cavali, Darci.,Ataides, Regis.,Spogis,Nicolas Numerical analysis of flow at kambara reactor (KR) for hot metal desulphurization,16th Steelmaking Conference Proceedings , pp. 221-232. 2007. [16]. Laundre,B.E.,andSpalding,D.B.,“Mathematical Models of Turbulent Flows,”Chap.5,PP.90-100,Academic,London,1972. [17]. Wolfshtein,M. W., “The Velocity and Temperature Distribution and Pressure Gradient”, Int J. Heat and Mass Transfer, vol. 12, pp.301,1969. [18]. Spalding, D. B., “ Momograph on Turbulent Boundary Layer”, Imperical College, Mechanical Engineering, Depart. Rep. TWF/TN/33,1967. [19]. Djilai, N., Gartshore, I., and Salcudean, M., “Calculation of Convective Heat Transfer Reirculation Turbulent Flow Using Various Near-Wall Turbulence Models,” Numerical Heat Transfer An Int. Journal of Computation and Methodelogy, Vol. 16, No. 2, 1989. [20]. Jayatilleke, C.L., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum And Heat Transfer”, Prog.HeatMassTransfer,vol.1,pp.193-329,1969. [21]. Holman, J.P., Heat Transfer, McGraw Hill, New York (2001). [22]. Moaveni,S.,FiniteElement Analysis:Theory and Application with ANSYS , Prentice Hall, New Jersey (2002) [23]. ANSYS,Inc. Theory Reference Release12.1. [24]. 田口玄一,「品質設計的實驗計畫法」,中國生產力中心,台北 (2003)。 [25]. 李輝煌,田口方法-品質設計的原理與實務,高立圖書公司,2000年。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4039-
dc.description.abstract由於鋼鐵煉製的技術日益進步,對於目前鋼鐵的煉鋼品質也相對提高,而鋼鐵品質的優劣取決於鋼鐵內部含硫量的多寡,以往以魚雷車脫硫以及噴吹脫硫方式已無法滿足目前高品質之煉鋼需求。 目前新式的脫硫技術KR (Kambara Reactor) 法,其脫硫效率高達85%以上,但由於作業脫硫回數壽命僅約180回左右,因此對其壽命降低之因素急需進行探討研究,由於KR作業時受熱應力影響造成外部耐火材料之攪拌葉片破裂,使高溫鐵水滲入內部燒熔錨固件,導致KR提前下線,因此本研究以有限元素分析方法進行鐵水內流場、KR攪拌器熱傳以及結構應力應變模擬分析,獲得KR攪拌器於多回合脫硫作業下,攪拌葉片與內部錨固件承受高溫之應力應變情況,加以探討KR作用壽命降低之因子,並建議以最佳化分析找出提升使用壽命之設計。zh_TW
dc.description.abstractIn modern technology, the demand of high performance and high value steel products has increased drastically. This leads the progress on the technologies of steel refinement and develops many state of the art manufacturing processes on producing high quality steels. In general, the reducing sulfur content is the key factor in steel refining processes and the quality of the steel product always rely on the drastic reduction of the sulfur content in steel. Usually, desulfurization is performed through the use of Torpedo vehicle or the use of the injection desulfurization. However, due to its high standard on the sulfur content of high quality steel, the above mention methods have come obsolete. Recently, a novel technology of desulfurization called “Kambara Reactor” (KR) method has been used to perform the desulfurization and the efficiency of this method reaches more than 85%. Although the KR method is the better method used for desulfurization, its lifetime was limited to around 180 times during normal operation. In order to increase the life cycle and reduce the cost. The factors cause the decreasing of lifetime on KR is worth to discuss. In particular, the refractory materials of outer impeller ring will fracture due to effects such as thermal shock when operating using KR method, therefore will cause the hot molten iron penetrate into the inner core of the KR and destroy the anchor. This paper presents the work summarized the analysis of fluid field, thermal conduction and structure using finite element method (FEM) simulation. The results help us to obtain the stress-strain relation on impeller and internal anchor of KR impeller under room and high temperature environment during its operation in multicycles desulfurization.en_US
dc.description.tableofcontents摘要......................................................I Abstract.................................................II 目錄.....................................................IV 表目錄.................................................VIII 圖目錄...................................................IX 符號說明................................................XIV 第一章 緒論...............................................1 1-1 前言.............................................1 1-2 研究動機與目的...................................2 1-3 文獻回顧.........................................7 1-4 論文架構........................................11 第二章 相關基礎理論介紹..................................13 2-1 計算流體力學(COMPUTATIONAL FLUID DYNAMIC, CFD)..13 2-2 流場分析理論[14]................................14 2-2-1 基本假設........................................14 2-2-2 流場統御方程式..................................15 2-2-3 k-ε紊流模式....................................16 2-2-4 壁面函數(Wall-function).........................18 2-3 熱傳分析理論[21]................................21 2-3-1 熱傳導..........................................21 2-3-2 熱對流..........................................23 2-4 熱應力分析理論..................................24 2-5 KR攪拌器材料性質................................26 2-6 耦合場分析(COUPLED - FIELD ANALYSIS)概述........27 2-6-1 耦合場的定義....................................27 2-6-2 耦合場分析的類型................................27 2-6-3 耦合場分析流程..................................28 第三章 有限元素數值計算方法與計算軟體.....................31 3.1 有限元素法之流場分析............................31 3.1.1 有限體積法(Finite Volume Method, FVM)...........31 3.2 有限元素法之熱傳分析............................32 3.2.1 有限元素熱傳方程式..............................32 3.2.2 有限元素法之熱應力與應變分析....................36 3.3 有限元素分析軟體ANSYS介紹.......................37 3.3.1 計算流體力學模組(CFX)...........................38 3.3.2 熱傳計算模組....................................38 3.3.3 結構計算模組....................................39 3.4 有限元素軟體分析流程............................39 3.4.1 前處理(Pre-process).............................39 3.4.2 計算求解(Solver)................................39 3.4.3 後處理(Post-process)............................40 3.5 熱傳模擬分析流程................................40 第四章KR攪拌系統模型建構與數值模擬........................43 4.1 KR攪拌系統模型建構..............................43 4.2 網格劃分........................................47 4.2.1 網格化元素......................................47 4.3 流場模擬分析參數與邊界條件設定..................49 4.4 熱傳模擬分析參數與邊界條件設定..................53 第五章 數值模擬分析結果與討論............................56 5.1 流場模擬計算分析結果............................56 5.2 KR攪拌器熱傳導模擬計算分析結果..................58 5.3 KR攪拌器應力應變模擬計算分析結果................66 5.4 KR錨件結構最佳化................................75 5.4.1 實驗計畫法[24][25]..............................76 5.4.2 田口方法於KR攪拌器參數之設計流程................79 5.4.2.1 田口方法參數之設計條件..........................79 5.4.2.2 KR攪拌葉片內部V錨件之參數設計...................82 第六章 結論與未來研究方向.................................91 6.1 結論............................................91 6.2 未來展望........................................92 參考文獻..................................................93 附錄......................................................96zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1108201117511900en_US
dc.subjectsteelen_US
dc.subject鋼鐵zh_TW
dc.subjectKRen_US
dc.subjectdesulfurizationen_US
dc.subjectanchoren_US
dc.subjectKRzh_TW
dc.subject脫硫zh_TW
dc.subject錨固件zh_TW
dc.title煉鋼脫硫製程中KR溫差條件下之結構應力應變解析與最佳化設計研究zh_TW
dc.titleStress and Strain Analysis Due to Temperature Effects on KR (Kambara Reactor)Impeller Application to Steel Industryen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.