Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/40406
標題: | ECTO-NOX target for the anticancer isoflavene phenoxodiol | 作者: | Morre, D.J. 闕斌如 Chueh, P.J. Yagiz, K. Balicki, A. Kim, C. Morre, D.M. |
關鍵字: | ECTO-NOX;NADH oxidase;tNOX;cancer;phenoxodiol;isoflavene;nadh oxidase activity;temperature-compensated period;hela;plasma-membranes;cell enlargement oscillates;thiol interchange;activity;electron-transport;transformed-cells;cancer-patients;ovarian-cancer;urea ly181984 | Project: | Oncology Research | 期刊/報告no:: | Oncology Research, Volume 16, Issue 7, Page(s) 299-312. | 摘要: | Phenoxodiol, a synthetic isoflavene with clinical efficacy in the management of ovarian and other forms of human cancer, blocked the activity of a cancer-specific and growth-related cell surface ECTO-NOX protein with both oxidative (hydroquinone) and protein disulfide-thiol interchange activity designated tNOX. Purified recombinant tNOX bound phenoxodiol with high affinity (K-d of 50 nM). The tNOX protein appeared to be both necessary and sufficient for the cancer-specific cytotoxicity of phenoxodiol. Growth inhibition of fibroblasts from embryos of mice expressing a tNOX transgene, but not from wild-type mice, was inhibited by phenoxodiol followed by apoptosis. Both the oxidative and protein disulfide-thiol interchange activities that alternate to generate the complex set of oscillations with a period length of 22 min (24 min for the constitutive counterpart CNOX) that characterize ECTO-NOX proteins respond to phenoxodiol. Oxidation of NADH or reduced coenzyme Q10 was rapidly blocked by phenoxodiol. In contrast, the protein disulfide-thiol interchange activity measured either by the restoration of activity to scrambled and inactive RNase or from the cleavage of dithiodipyridine (EC50 Of 50 nM) was inhibited progressively over an interval of 60 min that spanned three cycles of activity. Inhibition of the latter paralleled the inhibition of cell enlargement and the consequent inability of inhibited cells to initiate traverse of the cell cycle. Activities of constitutive ECTO-NOX (CNOX) forms of either cancer or noncancer cells were unaffected by phenoxodiol to help explain how the cytotoxic effects of phenoxodiol may be restricted to cancer cells. |
URI: | http://hdl.handle.net/11455/40406 | ISSN: | 0965-0407 |
Appears in Collections: | 生物醫學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.