Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4051
DC FieldValueLanguage
dc.contributor武東星zh_TW
dc.contributorDong-Sing Wuuen_US
dc.contributor楊敏德zh_TW
dc.contributorMin-De Yangen_US
dc.contributor.advisor洪瑞華zh_TW
dc.contributor.advisorRay-Hua Horngen_US
dc.contributor.author黎家豪zh_TW
dc.contributor.authorLi, Chia-Haoen_US
dc.contributor.other中興大學zh_TW
dc.date2012zh_TW
dc.date.accessioned2014-06-06T06:26:54Z-
dc.date.available2014-06-06T06:26:54Z-
dc.identifierU0005-2008201117013600zh_TW
dc.identifier.citation[1] 小長井誠、瀨川浩司、桑野幸德、一木修、田路和幸,Eric Weber, “太陽能發電”,Newton量子科學雜誌,第26號,第18-75頁, 2009。 [2] Vittorio E. Pareto, Marcos P. Pareto. "The Urban Component of the Energy Crisis". Retrieved, 2008. [3] 翁谷松、劉乃元、彭成鑑、洪健龍,“太陽光電材料產業現況與發展機會”,工業材料雜誌,第255期,第124-135頁,2008。 [4] A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells”, J. Phys. D: Appl. Phys., vol. 13, p 839-846, 1980. [5] 戴寶通、鄭晁忠,“太陽能電池技術手冊”,台灣電子材料與元件協會發行出版,台灣,2008。 [6] B. Burnett, “The Basic Physics and Design of III-V Multijunction Solar Cells”, the NREL’s III-V research, 2002. [7] D. C. Law, R. R. Kinga, H. Yoona, M. J. Archerb, A. Bocaa, C. M. Fetzera, S. Mesropiana, T. Isshikia, M. Haddada, K. M. Edmondsona, D. Bhusaria, J. Yena, R. A. Sherifa, H. A. Atwaterb, and N. H. Karama, “Future technology pathways of terrestrial III–V multijunction solar cells for concentrator photovoltaic systems”, Solar Energy Materials and Solar Cells, vol. 94, p. 1314, 2010. [8] C. M. Fetzer, R. R. Kinga, P. C. Coltera, K. M. Edmondsona, D. C. Lawa, A. P. Stavridesa, H. Yoona, J. H. Ermera, M. J. Romerob, and N. H. Karama, “High-efficiency metamorphic GaInP/GaInAs/Ge solar cells grown by MOVPE”, J. Cryst. Growth, vol. 261, p 341, 2004. [9] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, D. D. Krut, J. H. Ermer, R. A. Sherif, and N. H. Karam, “Advances in High-Efficiency Multijunction Solar Cells”, Advances in OptoElectronics, vol. 2007, p. 29523, 2007. [10] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells”, Appl. Phys. Lett., vol. 90, p. 183516, 2007. [11] J. F. Geisz, Sarah Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction”, Appl. Phys. Lett., vol. 91, p. 023502, 2007. [12] H. Yamaguchi, N. Takahashi, T. Kodama, R. Izichi, H. Washio, K. Nakamura, T. Takamoto, M. Imaizumi, M. Takahashi, K. Shimazaki, and K. Kibe, “Development status of Space Solar Sheet”, Photovoltaic Specialists Conference, 2008. PVSC ''08. 33rd IEEE, p. 3, 2008. [13] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., 80, p. 3967, 2002. [14] D. A. Neamen, “Semiconductor Physics and Devices”, the McGraw Hill Companies, New York, 2002. [15] S. M. Sze, “Semiconductor Devices Physics and Technology”, New York, Wiley, 2003. [16] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, J. Appl. Phys., vol. 51, p. 4494, 1980. [17] M. A. Green, “Solar cells: Operating principles, technology, and system applications”, Univ. of New South Wales, Prentice Hall, Englewood Cliffs, NJ, 1982. [18] M. P Thekackra, “The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report, 1970. [19] 蔡進譯, “超高效率陽電池”, 物理雙月刊, 第廿七卷五期, 第701頁, 2005. [20] D. A. Neamen, “Semiconductor Physics and Devices”, the McGraw Hill Companies, New York, 2002. [21] 李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 台灣, 2002. [22] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE Trans Electron Devices, vol. 31, p. 671, 1984. [23] A. Piotrowska, A. Guivarc''h, and G. Pelous, “Ohmic Contacts to III-V Compound Semiconductors: A Review of Fabrication Techniques”, Solid State Electronics, vol. 26, p. 179, 1983. [24] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE Trans Electron Devices, vol. 31, p. 671, 1984. [25] 紀國鐘, 蘇炎坤, “光電半導體技術手冊”, 台灣電子材料與元件協會出版, 台灣, 2002. [26] Gregory S. Marlow and Mukunda B. Das, “The effects of contact size and non-zero metal resistance on the determination of specific contact resistance”, Solid-State Electronics Vol. 25, No. 2, p. 91, 1982. [27] 陳立俊, 張立, 梁鉅銘, 林文台, 楊哲人, 鄭晃忠, “材料電子顯微鏡學”, 國家實驗研究院儀器科技研究中心, 台灣, 1990. [28] 高至鈞, 汪建民, “材料分析”, 中國材料科學學會, 台灣, 1998. [29] M. J. Ludowise, “Metalorganic chemical vapor deposition of III-V semiconductors”, J. Appl. Phys, vol. 58, p. R31, 1985. [30] O. Feron, M. Sugiyama, W. Asawamethapant, N. Futakuchi, Y. Feurprier, Y. Nakano, and Y. Shimogaki, “MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor”, Appl. Surf. Sci., vol. 159-160, p. 318, 2000. [31] 鄧建龍、姚潔宜、張茂男, “X-ray Diffraction Utilized in the Semiconductor Industry,” Nano Communicaion, p. 15, 4, 2008. [32] 陳隆建, “發光二極體之原理與製程,” 2006.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4051-
dc.description.abstract本論文藉由化學選擇性蝕刻及十字型蝕刻道重複製備薄膜砷化鎵太陽電池,探討砷化鎵薄膜太陽電池特性,以及使用再生基板製作之薄膜砷化鎵太陽電池元件特性。 薄膜型太陽電池是利用氫氟酸溶液側向蝕刻砷化鋁犧牲層的方式,將太陽電池結構轉移至具有十字型蝕刻道的鎳金屬基板上,電鍍法製備之鎳基板具有良好導熱、導電係數以及低應力等特性,適合做為砷化鎵太陽電池之轉移基板,十字型蝕刻道設計可大幅縮短側向蝕刻時間,以1mm2的元件面積為例,僅需約二小時左右,即可將之兩吋薄膜型砷化鎵太陽電池完整轉移至鎳基板上。在基板再利用製程中,本論文在砷化鎵基板與元件層中間加入二層磊晶結構(緩衝層、蝕刻停止層)作為基板保護層,當薄膜型砷化鎵太陽電池分離基板後,透過不同蝕刻選擇比之溶液移除基板保護層,即得到可再利用的砷化鎵基板。 經由原子力顯微鏡檢測再生基板的表面粗糙度,發現砷化鎵再生基板的表面粗糙度隨著再利用次數增加而逐漸上升,由全新砷化鎵基板的0.301nm上升至回收一次後的0.501nm和回收二次後的1.361nm;薄膜型砷化鎵太陽池開路電壓也由全新基板成長的0.95V,下降至一次再利用製程後的0.76V和兩次再利用製程後的0.66V;經由表面粗糙度檢測和薄膜砷化鎵電池電性量測發現,砷化鎵磊晶膜品質隨著基板表面粗糙度上升而劣化,進而降低薄膜砷化鎵太陽電池效率。zh_TW
dc.description.abstractThis thesis focuses on fabrication of thin-film solar cell via cross-shaped pattern epitaxial lift-off (CPELO) technology. The device performance of different recycled times thin-film GaAs solar cell will be discussed and compared. The cross-shaped pattern array is used to define cell size and provide the etch path of etchant solution. The AlAs sacrificial layer is etched by hydrofluoric acid etchant through the cross-shaped hole. The CPELO technique does not require a temporary carrier substrate to transfer the epilayers because the desired carrier substrate is directly deposited onto the backside of epilayers before the epitaxial lift-off process. The desired carrier, the electroplate nickel substrate, can be contacted directly to the epilayer without wax or low-viscosity epoxy. The release time of the 2-inch wafer with 1mm2 cell sizes is about 2 hours. After CPELO process, the separated GaAs substrate can be recycled via chemical cleaning. The substrate degradation after lift-off was investigated using atomic force microscopy (AFM). The surface roughness is about 0.30 nm for new wafers and 0.50nm, 1.36nm after first and second substrate reused. With the increased roughness, the thin-film solar cell reduced in open-circuit voltage (Voc) in one-sun AM 1.5G light source. The Voc of thin-film cell separated from new GaAs substrate is 0.95 V. Compared to thin-film cells separated from first and second recycled GaAs substrate are 0.76 V and 0.66 V, respectively. Reused GaAs substrate surface roughness will lead to reduce the quality of epitaxy layer and also deteriorate the thin-film cell efficiency.en_US
dc.description.tableofcontents致謝 I 中文摘要 II Abstract III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章、緒論 1 1-1前言 1 1-2全球暖化 1 1-3能源危機與替代能源 2 1-4今發展趨勢 3 1-5研究動機 7 1-6論文架構 8 第二章、基礎理論與太陽電池工作原理 9 2-1半導體能帶理論 9 2-2光電效應與光伏特效應 10 2-3半導體的光吸收現象與吸收係數 11 2-4太陽能電池工作原理 13 2-5太陽光譜 13 2-6太陽電池的基本參數 14 2-6-1短路電流Isc (short circuit current)15 2-6-2開路電壓Voc (open circuit current)15 2-6-3填充因子FF (fill factor)15 2-6-4轉換效率h (conversion efficiency)16 2-7太陽能電池之等效電路 16 2-8歐姆接觸與蕭特基接觸 17 2-9太陽電池之抗反射膜 18 2-9-1單層膜原理 19 2-9-2雙層膜原理 19 2-10影響太陽能電池效率之因素 20 第三章、元件製程與量測儀器原理 22 3-1 III-V族化合物半導體磊晶 22 3-1-1 III-V族化合物半導體磊晶方法介紹 22 3-1-2 MOCVD 原理 23 3-1-3 以MOCVD磊晶GaAs薄膜流程步驟 24 3-2砷化鎵太陽能電池結構設計 25 3-3基板型砷化鎵太陽電池元件製作 25 3-3-1 清洗試片 26 3-3-2電極製作 26 3-3-3退火熱處理 27 3-3-4蝕刻P型歐姆接觸層 27 3-3-5柵狀電極之設計 27 3-3-6抗反射層之製作 28 3-4薄膜型砷化鎵太陽電池元件製作 28 3-4-1下電極製作 28 3-4-2蒸鍍蝕刻保護層 29 3-4-3蝕刻道製作 29 3-4-4電鍍法製備鎳基板 29 3-4-5濕式蝕刻犧牲層 30 3-5基板再利用製程 30 3-6環狀傳輸線電阻率測定模式 30 3-7分析儀器原理 31 3-4-1 X光繞射儀 32 3-4-2掃描式電子顯微鏡 32 3-4-3 原子力顯微鏡 33 3-4-4太陽光模擬器與IV量測系統 33 3-4-5光電特性量測 34 3-4-6 n&k光學量測系統 34 3-4-7 PL量測系統 35 3-4-8冷熱衝擊系統 35 第四章、結果與討論 36 4-1移除P型歐姆接觸層之影響 36 4-2電極退火處理之影響 37 4-3抗反射層(AR-coating)對光電流之影響 37 4-4溶液蝕刻速率比較表 39 4-5化學蝕刻分離技術製程探討 39 4-6不同面積元件之分離時間比較 40 4-7薄膜砷化鎵磊晶膜PL量測 40 4-8基板型與薄膜型元件接觸電阻比較 41 4-9回收基板表面粗糙度比較 42 4-10再利用基板成長之薄膜砷化鎵太陽電池特性 43 4-11冷熱衝擊測試 45 第五章、結論與未來展望 46 5-1結論 46 5-2未來展望 47 參考文獻 48zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008201117013600en_US
dc.subjectEpitaxial lift-offen_US
dc.subject砷化鎵太陽電池zh_TW
dc.subjectrecycled substrateen_US
dc.subjectthin film solar cellen_US
dc.subject薄膜型太陽電池zh_TW
dc.subject基板再利用zh_TW
dc.title砷化鎵薄膜太陽能電池與基板再利用技術之研發zh_TW
dc.titleStudy on Thin Film GaAs Solar Cells and Substrate Reused Technologiesen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.