Please use this identifier to cite or link to this item:
標題: 薄型化氣體擴散層製程開發用於質子交換膜燃料電池之研究
Research of Thin Gas Diffusion Layer Manufacturing Process for Proton Exchange Membrane Fuel Cells
作者: 邱承浩
Ciou, Cheng-Hao
關鍵字: Gas diffusion layer;氣體擴散層;Carbon fiber paper;Proton exchange membrane fuel cell;Micro porous layer;碳纖維紙;質子交換膜燃料電池;微孔層
出版社: 精密工程學系所
引用: [1] 陳崇憲,推展氫能應用新時代,台灣經濟研究院期刊,26-27(2008)。 [2] 黃鎮江,燃料電池,全華科技圖書股份有限公司,2003。 [3] 楊志忠,林頌恩,韋文誠,燃料電池的發展現況,科學發展月刊, 367:30-33(2003). [4] 鄭耀宗,徐耀昇,燃料電池技術進展的現況分析,節約能源論文發表會,409-422(1999)。 [5] K. Sundmacher and K. Scott, “Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapor-liquid-solid system,” Chemical Engineering Science, Vol. 54, pp. 2927-2936, 1999. [6] J. H. Wee, “Which type of fuel cell is more competitive for portable application : Direct methanol fuel cells or direct borohydride fuel cells,” Journal of Power Sources, Vol. 161, pp. 1-10, 2006. [7] 台灣燃料電池資訊網。 [8] R. J. Kerekes and C. J. Schell,“Characterization of fibre flocculation by a crowding factor,” Journal of Pulp and Paper science, Vol. 18, pp. 32-38, 1992. [9] D. M. Bernardi and M. W. Verbrugge, “Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte,” AICHE Journal, Vol. 37, pp. 1151-1163, 1991. [10] V. Gurau, H. Liu and S. Kakac, “Two-dimensional model for proton exchange membrane fuel cells,” AICHE Journal, Vol. 44, pp. 2410-2422, 1998. [11] W. K. Lee, C. H. Ho, J. W. Van Zee and M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell,” Journal of Power Sources, Vol. 84, pp. 45-51, 1999. [12] F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti and L. Giorgi, “ Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs,” Journal of Applied Electrochemistry, Vol. 29, pp. 445-448, 1999. [13] V. Gurau, F. Barbir and H. Liu, “An analytical solution of a half-cell model for PEM fuel cells,” Journal Electrochemical Source, Vol. 147, pp. 2468-2477, 2000. [14] L. R. Jordan, A. K. Shukla, T. Behrsing, N. R. Avery, B. C. Muddle and M. Forsyth, “Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure,” Journal of Applied Electrochemistry, Vol. 30, pp. 641-646, 2000. [15] D. Natarajan and T. V. Nguyen, “A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors,” Journal of the Electrochemical Society, Vol. 148, pp. 1324-1335, 2001. [16] C. S. Kong, D. Y. Kim, H. K. Lee, Y. G. Shul and T. H. Lee, “ Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 108, pp. 185-191, 2002. [17] Z. Qi and A. Kaufman, “Improvement of water management by a microporous sublayer for PEM fuel cells,” Journal of Power Sources, Vol. 109, pp. 38-46, 2002. [18] H. S. Chu, C. Yeh, and F. Chen, “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell,” Journal of Power Sources, Vol. 123, pp. 1-9, 2003. [19] G. G. Park, Y. J. Sohn, T. H. Yang, Y. G. Yoon, W. Y. Lee and C. S. Kim, “Effect of PTFE contents in the gas diffusion media on the performance of PEMFC,” Journal of Power Sources Vol. 131, pp. 182-187, 2004. [20] M. Prasanna, H. Y. Ha, E. A. Cho, S. A. Hong and I. H. Oh, “ Influence of cathode gas diffusion media on the performance of the PEMFCs,” Journal of Power Sources, Vol. 131, pp. 147-154, 2004. [21] C. Lim and C.Y. Wang, “Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell,” Electrochimica Acta, Vol. 49, pp. 4149-4156, 2004. [22] M. V. Williams, E. Begg, L. J. Bonville, H. R. Kunz and J. M. Fentona, “Characterization of Gas Diffusion Layers for PEMFC,” Journal of the Electrochemical Society, Vol. 151, pp. 1173-1180, 2004. [23] J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan and J. Itescu, “ Water flow in the gas diffusion layer of PEM fuel cells,” Journal of Membrane Science, Vol. 261, pp. 98-106, 2005. [24] S. Park, J. W.Lee and B. N. Popov, “Effect of carbon loading in microporous layer on PEM fuel cell performance,” Journal of Power Sources, Vol. 163, pp.357-363, 2006. [25] T. Yang , P. Shi, C. Du, “Study on self-humidified PEMFC with reactant circulation,”Electrochimica Acta, Vol. 51, pp. 5618-5625, 2006 [26] W. M. Yan, C. Y. Hsueh, C. Y. Soong, F. Chen, C. H. Cheng and S. H. Mei, “Effects of fabrication processes and material parameters of GDL on cell performance of PEM fuel cell,” International Journal of Hydrogen Energy, Vol. 32, pp. 4452-4458, 2007. [27] J. Lobato, P. Canizares, M. A. Rodrigo, C. Ruiz-Lopez and J. J. Linares, “Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells,” Journal of Applied Electrochemistry, Vol. 38, pp. 793-802, 2008. [28] S. Park, J. W. Lee, B. N. Popov, “Effect of PTFE content in microporous layer on water management in PEM fuel cells,” Journal of Power Sources, Vol. 177 , pp. 457-463, 2008. [29] 李鈞函,微成型金屬雙極板於微型直接甲醇燃料電池之研究,國立中興大學碩士論文2007。 [30] 吳建德,陽極電極結構對直接甲醇燃料電池效能的影響,國立中興大學碩士論文,2008。 [31] 陳晉華,薄型化碳纖維紙製程開發應用於燃料電池之研究,國立中興大學碩士論文,2008。
本超薄型氣體擴散層能顯著地降低氫能燃料電池堆尺寸,本研究將致力開發超薄型氣體擴散層用於質子交換膜燃料電池。使用聚丙烯腈 (Polyacrylonitrile, PAN)碳纖維其長度為6mm,再以基重為15g/m2及20 g/m2分別混入不同濃度之聚丙烯酰胺(Polyscrylamide, PAM)混合聚乙烯醇(Polyvinyl Alcohol, PVA.)溶液中,使其碳纖維均勻分散並提高碳纖維間之機械強度;透過濕式抄紙技術製作成碳纖維紙,將碳纖維紙以液態含浸法(Liquid Impregnation Method)來含浸不同濃度之酚醛樹脂(phenolic resin),再進行熱壓,經由850℃高溫碳化與1650℃石墨化製程後可完成其碳纖維紙。將碳纖維紙浸入含5%的聚四氟乙烯(Polytetrafluoroethylene, PTFE)溶液中進行疏水處理,並塗佈微孔層(Micro porous Layer , MPL),即可獲得超薄型氣體擴散層。以上述製程所獲得之氣體擴散層經量測後其最薄厚度可達48μm,拉伸強度為32~39N/cm,穿透電阻為2.5mΩ.cm2,氣體穿透度為750cm3/cm2/s,經測試後,當電池電壓為0.6V,氫氣與空氣氣體化學流量比為1.5/2.5,工作溫度為60℃,在無背壓下,最大電流密度可達到815mA/cm2。經由本研究探索超薄型氣體擴散層製作得以應用於質子交換膜燃料電池,也呈現出可行的功能性實證於燃料電池應用。

Ultrathin gas diffusion layer (GDL) can significantly reduce the hydrogen fuel cell stack size. This research aims to study the ultrathin carbon fiber paper fabrication for proton exchange membrane fuel cells (PEMFCs). Polyacrylonitrile (PAN) based carbon fibers with 6 mm long was dispersed and formed at the basis weights of 15g/m2 and 20 g/m2 by a slurry molding machine. The disperse agent polyscrylamide (PAM) and polyvinyl alcohol (PVA) solutions for fiber binding were added to help carbon fibers distribution evenly and increase the paper mechanical strength. The 28x28 cm2 carbon fiber papers were completed. Since heat treatment is required to reduce carbon fiber paper electrical resistance, the phenolic resin plays the fiber binding purpose. It's a thermosetting resin containing carbon after pyrolysis. The phenolic resin was diluted to 16 to 33% for carbon fiber papers impregnation. After impregnation, the carbon fiber papers were dried by a convective oven at temperature 120℃ for 10 minutes. After impregnating the fiber papers with different concentrations of phenolic resin, a hot press process can set down the fiber paper to the desired thickness. The hot press machine was heat to temperature160℃ and press the workpieces for 10 minutes. Two heat treatment steps were used. Low temperature heat treatment (raise the temperature to 850℃) was to carbonize the phenolic resin and bond the carbon fibers. High temperature treatment (raise the temperature to 1650℃) was to graphitize the carbon fiber and related carbon structures. After graphitization, gas diffusion substrates (GDS) in the paper form are finished. GDS then be immersed to the 5% polytetrafluoroethylene (PTFE) solution and coated with a micro porous layer (MPL), the ultrathin GDL is completed. The experimental results of this ultrathin GDLs include the thinnest thickness 48 μm, tensile strength 32~39N/cm, electrics resistance 2.5mΩ‧cm2, and gas permeability 750 cm3/cm2/s. In the Tafel test, when the cell voltage is 0.6 V, hydrogen and air gas flow ratio is 1.5/2.5, and the working temperature is 60 ℃, without the back pressure, the maximum current density is 815mA/cm2. This study shows the ultrathin GDL fabrication suitable for PEMFC applications and exhibits the feasible functionality for fuel cells.
其他識別: U0005-2507201114551600
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.