Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4080
標題: 利用第一原理計算探討氧化鋅磊晶薄膜擇優生長機制與特性
Ab Initio Study of Preferred Growth for Epitaxial ZnO Thin Film
作者: 蕭宇晉
Siao, Yu-Jin
關鍵字: ZnO;氧化鋅;First-principles;Surface energy;Epitaxial softening;第一原理計算;表面能;磊晶軟化
出版社: 精密工程學系所
引用: [1] http://www.hightechfinland.fi/ [2] http://www.databeans.net [3] K. Nakahara, T. Tanabe, H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger, and S. Niki, "Growth of undoped ZnO films with improved electrical properties by radical source molecular beam epitaxy", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Vol. 40, pp. 250 (2001). [4] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO", Nature Materials, Vol. 4, pp. 42 (2005). [5] T. P. Smith, W. J. Mecouch, P. Q. Miraglia, A. M. Roskowski, P. J. Hartlieb, and R. F. Davis, "Evolution and growth of ZnO thin films on GaN(0001) epilayers via metalorganic vapor phase epitaxy", Journal of Crystal Growth, Vol. 257, pp. 255 (2003). [6] H. Z. Xu, K. Ohtani, M. Yamao, and H. Ohno, "Surface morphologies of homoepitaxial ZnO on Zn- and O-polar substrates by plasma assisted molecular beam epitaxy", Applied Physics Letters, Vol. 89, pp. 71918 (2006). [7] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, " Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization", Journal of Applied Physics, Vol. 84, pp. 3912 (1998). [8] W. Z. Xu, Z. Z. Ye, T. Zhou, B. H. Zhao, L. P. Zhu, and J. Y. Huang, "Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source”, Journal of Crystal Growth, Vol. 265, pp. 133 (2004). [9] H. W. Lee, S. P. Lau, Y. G. Wang, B. K. Tay, and H. H. Hng, "Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique”, Thin Solid Films, Vol. 458, pp. 15 (2004). [10] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, " Single crystalline ZnO films grown on lattice-matched ScAlMgO4„(0001)…substrates”, Applied Physics Letter, Vol. 75, pp. 2635 (1999). [11] T. Makino, G. Isoya, Y. Segawa, C. H. Chia, T. Yasuda, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, "Optical spectra in ZnO thin films on lattice-matched substrates grown with laser-MBE method”, Journal of Crystal Growth, Vol. 214, pp. 289 (2000). [12] C. J. Pan, C. W. Tu, C. J. Tun, C. C. Lee, and G. C. Chi, "Structural and optical properties of ZnO epilayers grown by plasma-assisted molecular beam epitaxy on GaN/sapphire (0001)”, Journal of Crystal Growth, Vol. 305, pp. 133 (2007). [13] J. N. Dai, H. C. Liu, W. Q. Fang, L. Wang, Y. Pu, Y. F. Chen, and F. Y. Jiang, "Atmospheric pressure MOCVD growth of high-quality ZnO films on GaN/Al2O3 templates”, Journal of Crystal Growth, Vol. 283, pp. 93 (2005). [14] B. J. Zhao, H. J. Yang, G. T. Du, G. Q. Miao, Y. T. Zhang, Z. M. Gao, T. P. Yang, J. Z. Wang, W. C. Li, Y. Ma, X. T. Yang, B. Y. Liu, D. L. Liu, and X. J. Fang, "High-quality ZnO/GaN/Al2O3 heteroepitaxial structure grown by LP-MOCVD”, Journal of Crystal Growth, Vol. 258, pp. 130 (2003). [15] S. K. Hong, H. J. Ko, Y. F. Chen, T. Hanada, and T. Yao, "Evolution of initial layers of plasma-assisted MBE grown ZnO on (0001)GaN/sapphire”, Journal of Crystal Growth, Vol. 214, pp. 81 (2000). [16] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, "Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”, Applied Physics Letters, Vol. 77, pp. 3761 (2000). [17] C. W. Lin, D. J. Ke, Y. C. Chao, L. Chang, M. H. Liang, and Y. T. Ho, "Atomic layer deposition of epitaxial ZnO on GaN and YSZ”, Journal of Crystal Growth, Vol. 298, pp. 472 (2007). [18] Y. Kashiwaba, T. Abe, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura, and Y. Kashiwaba, "Comparison of non-polar ZnO (1 1 0) films deposited on single crystal ZnO (11 0) and sapphire (0 1 2) substrates”, Journal of Crystal Growth, Vol. 298, pp. 477 (2007). [19] N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, " Control of preferred orientation for ZnOx films: control of self-texture”, Journal of Crystal Growth, Vol. 130, pp. 269 (1993). [20] Z. L. Wang, X. Y. Kong, and J. M. Zuo, "Induced growth of asymmetric nanocantilever arrays on polar surfaces”, Physical Review Letters, Vol. 91, pp. 185502 (2003). [21] X. Y. Kong and Z. L. Wang, "Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts”, Nano Letters, Vol. 3, pp. 1625 (2003). [22] J. B. Baxter, F. Wu, and E. S. Aydil, "Growth mechanism and characterization of zinc oxide hexagonal columns”, Applied Physics Letters, Vol. 83, pp. 3797 (2003). [23] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, "Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Applied Physics Letters, Vol. 81, pp. 1830 (2002). [24] J. F. Rommeluere, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, V. Sallet, and Y. Marfaing, "Electrical activity of nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy”, Applied Physics Letters, Vol. 83, pp. 287 (2003). [25] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, B. Liu, Y. Che, L. P. Zhu and B. H. Zhao, " Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films”, Material Letter, Vol. 61, pp. 41 (2007). [26] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, "UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering”, Advanced Materials, Vol. 18, pp. 2720 (2006). [27] Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, and D. P. Norton, "p-type behavior in phosphorus-doped (Zn,Mg)O device structures”, Applied Physics Letters, Vol. 84, pp. 3474 (2004). [28] V. Vaithianathan, B. T. Lee, and S. S. Kim, "Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition”, Applied Physics Letters, Vol. 86, pp. 062101 (2005). [29] M. Sano, K. Miyamoto, H. Kato, and T. Yao, "Role of hydrogen in molecular beam epitaxy of ZnO”, Journal of Applied Physics, Vol. 95, pp. 5527 (2004). [30] P. Pant, J. D. Budai, R. Aggarwal, R. J. Narayan, and J. Narayan, "Thin film epitaxy and structure property correlations for non-polar ZnO films”, Acta Materialia, Vol. 57, pp. 4426 (2009). [31] A. Ougazzaden, D. J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, T. Aggerstam, S. Ould Saad, J. Martin, Z. Djebbour, O. Durand, G. Garry, A. Lusson, D. McGrouther and J. N. Chapman, " Growth of GaN by metal organic vapor phase epitaxy on ZnO-buffered c-sapphire substrates”, Jounral of Crystal Growth, Vol. 310, pp. 944 (2008). [32] D. J. Rogers, F. Hosseini Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M. R. Correira, M. Peres, A. Neves, D. McGrouther, J. N. Chapman and M. Razeghi, " Use of ZnO thin films as sacrificial templates for metal organic vaporphase epitaxy and chemical lift-off of GaN”, Applied Physics Letter, Vol. 91, pp. 071120 (2007). [33] G. Bruno, M. M. Giangregorio, G. Malandrino, P. Capezzuto, I. L. Fragala, and M. Losurdo, "Is There a ZnO Face Stable to Atomic Hydrogen?”, Advanced Materials, Vol. 21, pp. 1700 (2009). [34] M. Born and R. Oppenheimer, "Zur Quantentheorie der Molekeln”, Ann. Phys. (Leipzig), Vol. 84, pp. 457 (1927). [35] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas”, Physical Review, Vol. 136 (3B), pp. 864 (1964). [36] M. Levy, "Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem”, Proceedings of the National Academy of Sciences, Vol. 76, pp. 6062 (1979). [37] Mel Levy and John P. Perdew, "The constrained search formulation of density functional theory”, In Density Functional Methods in Physics (eds. Reiner M. Dreizler and Joao da Providencia), p. 11ff. (Plenum Publishing Corporation, New York, 1985). [38] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects”, Physical Review, Vol. 140 (4A), pp. 1133 (1965). [39] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980). [40] J. P. Perdew and A. Zunger, "Self-interaction correction to density-functional approximations for many-electron systems”, Physical Review B, Vol. 23, pp. 5048. (1981). [41] John P. Perdew and Yue Wang, "Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review B, Vol. 45, pp. 13244 (1992). [42] J. P. Perdew, in Electronic Structure of Solids ‘91, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11. [43] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple”, Physical Review Letter, Vol. 77, pp. 3865 (1996). [44] V. Ozolins, C. Wolverton, and A. Zunger, " Strain-induced change in the elastically soft direction of epitaxially grown face-centered-cubic metals”, Applied Physics Letter, Vol. 72, pp. 427 (1998). [45] C. N. Varney, G. L. W. Hart, C. Wolverton, "A coherency strain model for hexgonal-close-packed alloys”, TMS Letters, Vol. 1, pp. 35 (2004). [46] D. Vanderbilt, " Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Phyical. Review B, Vol. 41, pp. 7892 (1990). [47] J. A. Dean, Lange's Handbook of Chemistry, 14th ed. (McGraw-Hill, New York, 1992). [48] D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed. (U.S. National Bureau of Standards, Washington, DC, 1971).
摘要: 
本研究係利用第一原理 (First-principles) 計算探討ZnO半導體薄膜材料之磊晶生長機制,發現Zn1-x(Be,Mg,Al)xO薄膜摻雜Al成分將有助於提高ZnO磊晶穩定性,且循<2-1-10>生長方向之薄膜比[0001]與[10-10]穩定。應用簡諧彈性理論分析各軸向應力對不同生長方向之ZnO薄膜的影響,得出[0001]方向成長則為磊晶硬化方向,並發現受應力作用下的ZnO薄膜,<11-2l>生長方向為一組僅次於<2 0>之磊晶軟化方向。我們進一步探討化學氣氛對ZnO薄膜表面能之影響,研究結果同樣顯示了ZnO (2-1-10)有著最低表面能,係為ZnO擇優生長方向,且O-terminated ZnO(0001)面為極性ZnO(0001)表面之擇優端面。而欲使ZnO磊晶結構在[0001]方向優先成長,僅在富含氧化學氣氛(O-rich)下,將有助於ZnO沿(0001)面成長。再者我們發現若 ZnO薄膜表面存在氫氣氛時,非極性ZnO表面受氫氣氛影響嚴重而趨於不穩定,此種趨勢將導致沿非極性方向成長之 ZnO薄膜較極性表面來的粗糙。

We study the growth mechanism of epitaxial ZnO thin film, based on first-principles density function calculations. A detailed analysis of the preferred (epitaxial) orientation of ZnO strained layer superlattices is examined. The epitaxial softening of (0001)-oriented Zn1-x(Be,Mg,Al)xO strained layer lattices are investigated, and the ZnO strained layers could be stabilized with adding the aluminum compositions, and <2-1-10>-oriented ZnO is more stable than (0001)- or (10-10)-oriented ZnO. Using the harmonic elasticity theory, we find the qharm([0001]) is the highest and the qharm([2-1-10]) is much softer than <0001> or <10-10>. In addition, the slightly softening of <11-2l> in Zn1-x(Be,Mg,Al)xO strained layer lattices is observed. Applying the surface formation energy method, we find (2-1-10) oriented surface is the dominated orientation in ZnO epitaxial process, but ZnO will changes its preferred orientation form the (2-1-10) to (0001) O-terminated ZnO under O-rich condition. Furthermore, our result also indicates that the preferred termination of the ZnO (0001) surface is O-terminated ZnO (0001) polar surface. A comparison of surface formation energy between bare ZnO surface and hydrogenated ZnO surface shows the non-polar ZnO surface is more sensitive than polar surface. The significant variation of surface energy has the dramatic effects on surface morphology and results a rough surface for non-polar ZnO surface.
URI: http://hdl.handle.net/11455/4080
其他識別: U0005-2706201116053600
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.