Please use this identifier to cite or link to this item:
標題: 以新式微拉伸設備量測次微米尺度材料機械性質
Using a new microtensile system to measure the mechanical properties of sub-micron thick thin film materials
作者: 童麒嘉
Tong, Chi-Jia
關鍵字: microtensile;微拉伸;sub-micron;mechanical properties;次微米;機械性質
出版社: 精密工程學系所
引用: [1]. 蔡春鴻,鄭光凱,杜家慶,吳宗學, “高密度電漿源設計製作及其應用在半導體製程之發展情況” [2]. 黃俊勛,”2004第三季全球半導體市場剖析暨2005預測” [3]. [4]. [5]. [6]. [7]. [8]. [9]. J. A. Schweitz, “Mechanical characterization of thin films by micromechanical techniques,” MRS Bulletin 17 (7), 34-45 (1992). [10]. T. P. Weihs, S. Hong, J. C. Bravman et al., “Mechanical deflection of cantilever microbeams: a new technique for testing the mechanical properties of thin films,” Journal of Materials Research 3 (5), 931-42 (1988). [11]. M. H. Tsai and S. C. Sun, J. Appl. Phys., 79 (9), pp. 6932-6938 (1996). [12]. M. G. Allen, M. Mehregany, R. T. Howe et al., “Microfabricated structures for the in situ measurement of residual stress, Young’s modulus, and ultimate strain of thin films,” Applied Physics Letters 51 (4), 241-3 (1987). [13]. A. J. Kalkman and A. H. Verbruggen, “High-temperature bulge-test setup for mechanical testing of free-standing thin films,” Rev. Sci. Instrum., Vol. 74, No. 3, March 2003 [14]. R. Spolenak, W.L. Brown, “Bulge testing of mechanical properties of thin copper films,” Lucent Tech., Bell Labs Innovations (2000). [15]. K. Najafi and K. Suzuki, “A novel technique and structure for the measurement of intrinsic stress and Young’s modulus of thin films,” Proceedings: IEEE Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots (IEEE Cat. No.89THO249-3) , 96-7 (1989). [16]. R. I. Pratt, G. C. Johnson, R. T. Howe et al, “Characterization of thin filmsusing micromechanical structures,” Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems , 197-202 (1992). [17].Ye et al, “Determination of the mechanical properties of microstructures”, Sensors and Actuators, A: Physical, v 54, n 1-3, June, 1996, p 750-754 [18] S. Greek, F. Ericson, S. Johansson et al., “In situ tensile strength measurement of thick-film and thin-film micromachined structures,” 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX. Digest of Technical Papers (IEEE Cat. No.95TH8173) , 56-9 vol.2 (1995). [19] D. T. Read and J. W. Dally, “Strength, ductility, and fatigue life of aluminum thin films,” International Journal of Microcircuits and Electronic Packaging 16 (4), 313-18 (1993). [20] W. N. Sharpe, Jr., B. Yuan, R. Vaidyanathan et al., “New test structures and techniques for measurement of mechanical properties of MEMS materials,”Proc. SPIE - Int. Soc. Opt. Eng. (USA), Proceedings of the SPIE - The International Society for Optical Engineering , 78-91 (1996). [21] J. A. Ruud, D. Josell, F. Spaepen et al., “A new method for tensile testing of thin films,” Journal of Materials Research 8 (1), 112-17 (1993). [22]. W. N. Sharpe, S. Brown, G. C. Johnson et al. , “Round-robin testing of modulus and strength of polysilicon,” Microelectromechanical Structures for materials research Symposium 518 , 57-62 (1998). [23]. R.P. Vinci, G. Cornellar, J.C. Bravman, Proceeding of 5th International workshop on stress induced phenomena in metallization, Stuttgart, Germany, AIP 240,(1999) [24] E. O. Hall, Proc. Phys. Soc. London 643 , 747 (1951). [25]. R.P. Vinci and J. J. Vlassak, “Mechanical behavior of thin films,” Annu. Rev. Mater. Sci. 26 , 431-62 (1996). [26]. A. S. Nowick and B. S. Berry, Anelastic relaxation in crystalline solids (Academic Press, New York, 1972). [27]. M. Prieler, H. G. Bohn, W. Schilling et al. , “Grain boundary sliding in thin substrate- bonded Al films,” J. Alloys Compd. (Switzerland), Journal of Alloys and Compounds , 424-7 (1994). [28]. Ming-Tzer Lin, PhD Dissertation, Lehigh University, (2003) [29]. Marc J. Madou, “Fundamentals of Microfabrication” second edition, (2002) [30]. D.E. Ibbotson, et. al, “Plasmaless dry etching of silicon with fluorine-containing compounds”, J. Appl. Phys. 56(10), Nov (1984) [31]. MRS spring meeting, Symposium O: Thin Films-Stresses and Mechanical Properties Mar. 28, 2005. [32]. G.M. Pharr, W.C. Oliver, and F.R.Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research, 7, pp 631-617, 1992. [33]. G.M. Pharr, and W.C. Oliver, “Measurement of thin film mechanical properties using nanoindentation,” MRS Bulltin, 7, pp 28-33, 1992. [34]. W.C. Oliver, and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, 7, pp 1564-1583, 1992. [35]. Haque, M.A. and Saif, M.T.A., “In Situ Tensile Testing of nano-scale Specimens in SEM and TEM,” EXPERIMENTAL MECHANICS, 42(1), 123-128 (2001). [36]. G. G. Stoney, Proc. R. Soc. London Ser. A 82 (172) (1909). [37]. Patrick B. Chu, Jeffrey T. Chen, “Controlled Pulse –Etching with Xenon Difluoride,” International Conference on Solid-State Sensors and Actuators, Chicago June 16-19, 1997 [38]. W. D. Nix, Metallurg. Trans. 20A 2217 (1989). [39]. R.F. Bunshah, vacuum 27 (1977) 353 [40]. Taljat, B. Zacharia, T.; Pharr, G.M. ” Pile-up behavior of spherical indentations in engineering materials”, Materials Research Society Symposium - Proceedings, v 522, Fundamentals of Nanoindentation and Nanotribology, p 33-38, 1998 [41]. Sneddon, Int. J. Eng. Sci. 3 , 47-57 (1965). [42]. Sharpe, W. N. Jr., Yuan, Vaidyanathan,B. Dauskardt, R. R. H. et al. “New test structures and techniques for measurement of mechanical properties of MEMS materials” Proc. SPIE - Int. Soc. Opt. Eng. (USA), Proceedings of the SPIE – The International Society for Optical Engineering, 78-91 (1996). [43]. Cornella, Guido “Monotonic and cyclic testing of thin film materials for MEMs applications” PhD thesis, Stanfard University (1999) [44]. Schreiber E. et al. Elastic Constants and Their Measurement. McGraw-Hill, New York 1973. [45]. HERTZBERG, R., 1996, Deformation and Fracture Mechanics of Engineering Materials, fourth edition (New York: Wiley) , p. 7. [46]. K. Jamting et al. Investigation of the elastic modulus of thin films using simple biaxial bending techniques Thin Solid Films, 304-309 (1997) [47]. Z.N. Farhat et al., Nanoindentation and friction studies on Ti-based nanolaminated films Surface and Coatings Technology 89 (1997) 24-30 [48]. P. G. Sanders et al. ELASTIC AND TENSILE BEHAVIOR OF NANOCRYSTALLINE COPPER AND PALLADIUM Acta mater. Vol. 45, No. 10, pp. 4019-4025 (1997) [49]. D.T. Read, Tension-tension fatigue of copper thin films Int. J. Fatigue Vol. 20, No. 3, pp. 203-209. 1998. [50]. M. Legros et al., Microsample tensile testing of nanocrystalline metals Philosophical magazine A, 2000, VOL. 80, NO. 4, 1017-1026 [51]. S. Suresh et al., NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES Scripta Materialia, Vol. 41, No. 9, pp. 951–957, 1999 [52]. HAIBO HUANG et al., TENSILE TESTING OF FREE-STANDING Cu, Ag AND Al THIN FILMS AND Ag/Cu MULTILAYERS Acta mater. 48 (2000) 3261-3269 [53]. Jie-Hua Zhao et al., Simultaneous measurement of Young’s modulus, Poisson ratio, and coefficient of thermal expansion of thin films on substrates Journal of applied physisc VOLUME 87, NUMBER 3, 2000. [54]. Te-Hua Fang et al., Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique Microelectronic Engineering 65 (2003) 231–238. [55]. Yong Zhou et al. Measurement of Young’s modulus and residual stress of copper film electroplated on silicon wafer Thin Solid Films 460 (2004) 175–180 [56]. Ya. M. Soifer et al. “Edge effect during nanoindentation of thin copper films” Materials Letters 59, 1434-1438 (2005) [57]. Haque, M.A. and Saif, M.T.A., Sensor and Actuator A 97-98 (2002) 239-245 [58]. G. M. Pharr, W. C. Oliver, and F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” Journal of Materials Research 7 (3), 613-17 (1992). [59]. R.P. Vinci, G. Cornellar, J.C. Bravman, Proceeding of 5th International workshop onstress induced phenomena in metallization,Stuttgart, Germany, AIP 240,(1999) [60]. G. Neugebauer, Tensile properties of thin, evaporated gold films, J.Appl. Phys. 31 (1960) 1096–1101. [61]. T.P. Weihs, S. Hong, J.C. Bravman, W.D. Nix, Mechanical deflection of cantilever microbeams: a new technique for testing the mechanical properties of thin films, J. Mater. Res. 3 (1988) 931–942. [62]. D. M. Schaefer, A. Patil, R. P. Andres, and R. Reifenberger, Nanoindentation of a supported Au cluster, Appl. Phys. Lett. 63, 1492 (1993) [63]. B. Kracke, B. Damaschke, Measurement of nanohardness and nanoelasticity of thin gold films with scanning force microscope, Appl. Phys. Lett. 77, 361(2000) [64]. P.-O. Renault et al., Measurement of the elastic constants of textured anisotropic thin films from x-ray diffraction data, Appl. Phys. Lett. 83, 473 (2003) [65]. H. D. Espinosa et al., A methodology for determining mechanical properties of freestanding thin films and MEMS materials, Journal of Mechanics and Physics of Solids. 51, 47-67 (2003) [66]. Dongil Son et al., Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film, Thin Solid Films 437(2003) [67]. Chang-Wook Baek et al., Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures, Sensors and Actuators A 117 17-27(2005) [68]. Bin Huang et al., Microbridge tests: II. On buckled thin gold films, J. Micromech. Microeng. 16 134-142 (2006) [69]. B. A. Samuel et al., Room temperature relaxation of freestanding nanocrystalline gold films, J. Micromech. Microeng. 16 929-934 (2006) [70]. Ranjana et al., Effect of structure on the mechanical properties of Ta and Ta(N) thin films prepared by reactive DC magnetron sputtering, Journal of Crystal Growth 174 (1997) 495-500 [71]. Moody et al., Adhesion and Fracture of Tantalum nitride films, Acta mater. 46(2) 585-597(1998) [72]. Nordin et al., Wear resistance of multilayered PVD TiN/TaN on HSS, Surface and Coatings Technology 120-121(1999)528-534
在此篇論文中針對目前文獻中微拉伸試驗上負載對準的問題加以改進,以自行架設之微拉伸試驗機量測薄膜材料的機械行為,並設計一新式電鍍製程製作微拉伸試件,提升試件製作的速率與良率。利用此微拉伸試驗機已分別測得不同的薄膜材料(Au, TaN, Cu)的楊氏係數(Young’s modulus)、降伏應力(yield stress)等機械性質。

In this research, we present a novel designed microtensile test apparatus that is capable of measuring the mechanical properties of free-standing thin film materials. We also develop a new fabrication method using the electroplating technique to fabricate the spring structure and frame of the microtensile test sample. With this new setup, we can increase the sample fabricate success rate and yield. In addition, we can also eliminate the loading misalignment problem of the previous microtensile tests. Adopting this new approach, we have successfully measured the mechanical properties (Young's modulus, yield stress and ultimate stress) of several thin film materials.
其他識別: U0005-1307200620020400
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.