Please use this identifier to cite or link to this item:
標題: 含三氧化鎢薄膜和感測電路之整合型微濕度感測器
Micro Humidity Sensors integrated with WO3 films and Circuits
作者: 陳富松
Chen, Fu-Song
關鍵字: humidity sensor;濕度感測器;tungsten oxide;CMOS;sol-gel;三氧化鎢;溶膠凝膠
出版社: 精密工程學系所
引用: [1] T. Hubert, “Humidity-Sensing Materials”, MRS BULLETIN, Vol. 24, No. 6, pp. 49-54 (1999) [2] T. Boltshauser, M. Schonholzer, O. Brand, and H. Baltes, “Resonant humidity sensors using industrial CMOS-technology combined with postprocessing”, Journal of Micromechanics and Microengineering, Vol. 2, No. 2, pp. 205-207(1992) [3] H. Shibata, M. Ito, M. Asakursa, and K. Watanabe, “A digital hygrometer using a ployimide film relative humidity sensor”, IEEE Transactions on Instrumentation and Measurement, Vol. 45, NO.2, pp. 218-224 (1998) [4] Y. Y. Qiu, C. Azeredo-Leme, L. R. Alcacer, and J. E. Franca, “A CMOS humidity sensor with on-chip calibration”, Sensors and Actuators A, Vol. 92, No.1-3, pp.80-87 (2001) [5] C. Laville, J. Y. Deletage, and C. Pellet, “Humidity sensors for a pulmonary function diagnostic microsystem”, Sensors and Actuators B, Vol. 76, No. 1-3, pp. 304-309 (2001) [6] C. Laville, C. Pellet, and G. N'Kaoua, “Interdigitated humidity sensors for a portable clinical microsystem”, IEEE Transactions on Biomedical Engineering, Vol. 49, No. 10, pp. 1162-1167 (2002) [7] E. Traversa, G. Gnappi, A. Montenero, G. Gusmanoa, “Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors”, Sensors and Actuators B 31 pp. 59-70 (1996) [8] L. Y. James, P. P. Tsai, “Lacunar pyrochlore-type tungsten oxides as humidity-sensing materials”, Solid Stats ionics 86-88 pp.1001-1004 (1996) [9] W. Qu and J. Meyer, “ Thick-film humidity sensor based on porous MnWO4 material ”, Meas. Sci. Tecchool. pp. 8593-600 (1997) [10] R.K. Nahar, V.K. Khanna, “Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor”, Sensors and Actuators B 46 pp. 35-41 (1998) [11] L.L.W. Chow, M.M.F. Yuen, P.C.H. Chan, A.T. Cheung, “Reactive sputtered TiO2 thin film humidity sensor with negative substrate bias”, Sensors and Actuators B 76 pp. 310-315 (2001) [12] S. Pokhrel, K.S. Nagaraja, “Electrical and humidity sensing properties of Chromium(III) oxide-tungsten(VI) oxide composites” Sensors and Actuators B 92 pp.144-150 (2003) [13] G. Kunte, U. Ail, S. Shivashankar and A. Mumarji, “Dip-coated hydrotungstite thin films as humidity sensors”, Bull. Mater. Sci., Vol. 28, No. 3, pp. 243-248 (2005) [14] R. Sundaram and K. S. Nagaraja, “ Solid state electrical conductivity and humidity sensing properties of WO3-Y2O3 composites ”, phys. stat. sol. (a) 201, No. 3, pp. 529-535 (2004) [15] N. Parvatikar, S. Jain, S. Khasima, M. Revansiddappa,S.V. Bhoraskar, M.V.N. A. Prasad, “Electrical and humidity sensing properties of polyaniline/WO3 composites”, Sensors and Actuators B 114 pp. 599-603( 2006) [16] P. M. Woodward, A. W. Sleight, “ Ferroelectric tungsten trioxide ”, J.Solid State Chem. 131 pp.9-17(1997) [17] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “ Introduction to Ceramics ”, 2nd edition, Wiley-Interscience Publication, New York, chap. 17 pp. 841-912 (1975) [18] S. M. Sze, “Semiconductor Sensors”, John Wiley and Sons, pp. 388-396 (1994) [19] C. J. Brinier and G. W. Scherer, “Sol-gel Science, The Physics and Chemistry of Sol-gel Processing”, Published by Academic Press, Inc., 2 (1990) [20] I. Ruokamo, T. Kärkkäinen, J. Huusko, T. Ruokanen, M. Blomberg, H. Torvela, and V. Lantto, “H2S response of WO3 thin-film sensors manufactured by silicon processing technology”, Sens. Actuators B, vol. 18-19, pp. 486-488 (1994) [21] C. Cantalini, M. Pelino, H. T. Sun, M. Faccio, S. Santucci, L. Lozzi, and M. Passacantando, “Cross sensitivity and stability of NO2 sensors from WO3 thin film,” Sens. Actuators B, vol. 35-36, pp. 112-118 (1996) [22] Cs. Balazsi, J. Pfeifer, " Structure and morphology changes caused by wash treatment of tungstic acid precipitates "Solid State Ionics 124 pp.73-81 (1999) [23] Y. Choi, G. Sakai, K. Shimanoe, N. Miura, N. Yamazoe, “ Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method ”, Sensors and Actuators B 87 pp.63-72 (2002) [24] I. Jimenez, J. Arbiol, A. Cornet, and J. R. Morante, “Structural and Gas-Sensing Properties of WO3 Nanocrystalline Powders Obtained by a Sol-Gel Method From Tungstic Acid”, Ieee Sensors Journal, Vol. 2, No. 4, August (2002)
此研究最主要目的為使用低成本的感濕薄膜,整合於電路結構上讀出訊號。感測區的面積為150×200 μm2,感測的輸出變化在500 mV輸入電壓,溫度25℃下,對於25~ 85 %RH的輸出電壓變化量為200mV左右,靈敏度為6.66 mV/%RH/V;在1000 mV輸入電壓,溫度25℃,對於25~ 85 %RH的輸出電壓變化量為380 mV,靈敏度為6.33 mV/ %RH/V。由於電阻式的感濕薄膜容易受溫度影響,為了達到標準化的感濕曲線,對晶片上的加熱器施與加熱偏壓,使之整體晶片的溫度固定來阻絕外在的環境溫度。阻絕溫度方面的量測,經實驗後證實10 V的加熱偏壓可以隔絕60℃下的外界溫度影響。

This study investigates the fabrication of humidity sensors integrated with micro heater and readout circuit using the commercial 0.35μm CMOS process. This sensing film of humidity sensors is tungsten trioxide that is prepared by a sol-gel process and calcined at 150℃ for 3 hr. The micro heater is employed to provide a stable temperature to the humidity sensor, which can avoid the influence of ambient temperature. The post-process uses etchant to etch sacrificial layers to expose the polysilicon line, and then the sensing film is coated on the polysilicon line. The humidity sensors, which are resistive type, change in resistance when the sensing film absorbs or desorbs vapor water. The circuits are utilized to convert the resistance variation of the humidity sensor into the voltage output.
Experimental results show that the sensitivity of sensor is 6.33 mV/ %RH/V at 25℃ under the humidity range of 25-85 % RH, and the micro heater can produce the temperature of about 60℃ when supplying the voltage of 10 V to the heater.
其他識別: U0005-2108200613032300
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.