Please use this identifier to cite or link to this item:
標題: 以二次晶圓接合技術研製具金屬反射鏡面之p-side up高亮度磷化鋁銦鎵發光二極體
High-brightness AlGaInP/mirror/Si LEDs with p-side up structure fabricated by twice wafer bonding technique
作者: 饒益侖
Rao, Yi-Lun
關鍵字: AlGaInP;磷化鋁銦鎵;GaAs;metal wafer bonding;p-side down;metal reflective mirror;twice wafer bonding technique;p-side up;砷化鎵;金屬晶圓接合技術;p-side down;金屬反射鏡面;二次晶圓貼合技術;p-side up
出版社: 精密工程學系所
引用: [1] G. B. Stringfellow, “High brightness light emitting diode”, Academic Press Inc. Boston, pp. 149-219, 1997. [2] H. Sugawara, M. Ishikawa and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes”, Appl. Phys. Lett. Vol. 58, pp. 1010-1012, Mar. 1991. [3] H. Sugawara, K. Itaya, H. Nozaki and G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes”, Appl. Phys. Lett. Vol. 61, pp. 1775-1777, Oct. 1992. [4] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. Defevere and F. A. Kish, “High-brightness AlGaInP light-emitting diodes”, IEEE. Vol. 85, pp. 1752-1764, Nov. 1997. [5] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P /GaP light-emitting diodes”, Appl. Phys. Lett. Vol. 64, pp. 2839-2841, May. 1994. [6] F. A. Kish, “Wafer-scale production of LEDs via wafer bonding: achievements and challenges”, LEOS’96, Boston, pp. 292-293 , 1996. [7] G. E. Hofer, D. A. Vanderwater, D. C. DeFevere, F. A. Kish, M. D. Camras, F. M. Steranka and I. -H. Tan, “Wafer bonding of 50-mm diameter GaP to AlGaInP-GaP light-emitting diode wafers”, Appl. Phys. Lett. Vol. 69, pp. 803-805, 1996. [8] H. C. Wang, Y. k. Su, C. L. Lin, W. B. Chen, S. M. Chen and W. L. Li, “Improvement of AlGaInP multiple-Quantum-well light- emitting diodes by modification of ohmic contact layer”, Jpn. J. Appl. Phys. Vol.43, No.4B, pp. 1934-1936. [9] 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術”, 第三版, 高立圖書有限公司, 台北, 台灣, pp. 104, 2000. [10]施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術”, 第三版,高立圖書有限公司, 台北, 台灣, pp. 192, 2000. [11] LumiLeds, “Thermal Management Considerations for Super Flux LEDs”, Application Note 1149-4. [12] Chin C. Lee and Jeong Park, “Temperature measurement of visible light-emitting diodes using nematic liquid crystal thermography with laser illumination”, IEEE photonics technology letters, Vol. 16, pp. 1706-1708, July 2004. [13] J. Millman and C. Halkias, Integrated Electronics (McGraw-Hill, New York, 1972). [14]史光國, “現代半導體發光及雷射二極體材料技術,” 全華科技,台 北,台灣, pp. 4-1, 2001 [15] W. C. Peng and Y. C. Wu, “Enhanced performance of an InGaN- GaN light-emitting diode by roughening the undoped-GaN surface and applying a mirror coating to the sapphire substrate”, Appl. Phys. Lett. Vol. 88, pp. 181117-1-181117-3, May 2006. [16] Y. J. LEE, T. C. Lu, H. C. Kuo, S. C. Wang, M. J. Liou, C. W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou and B. J. Lee, “AlGaInP light- emitting diodes with stripe patterned Omni-directional reflector”, Jpn. J. Appl. Phys. Vol.45, No.2A, pp.643-645, February 2006. [17]邱麒穎,“以低溫黏貼技術開發高亮度發光二極體”,國立中興大學精密工程所,碩士論文,2003年七月。 [18]李佳恩,“具散熱鏡面基板高功率發光二極體之嶄新晶片結構之研 發” ,國立中興大學電機工程系,碩士論文,2004年七月。 [19]莊志如,“鏡面基板對發光二極體效率影響之研究”,大葉大學電機工程系,碩士論文,2002年六月。
對紅色發光二極體(LED)而言,由於晶格常數之要求,通常將發光材料磷化鋁銦鎵成長於砷化鎵基板上。但砷化鎵具有吸光及散熱不佳之缺點,早期係以金屬晶圓接合之方式將磊晶膜貼合於散熱基板,再移除砷化鎵基板,以解決具吸光效果且散熱不佳之缺點,以此方法所製作之元件皆屬p-side down結構LED,其將會犧牲以磷化鎵作為良好窗口層之優點。
本論文使用二次晶圓貼合技術將磊晶膜透過一透明黏著層並以p-side up之形態轉移至具金屬反射鏡面且熱導係數較高之矽基板上,期望能使磷化鎵窗口層朝上且金屬鏡面不需經過高溫熱處理可維持其高反射率,而有效提昇發光二極體之亮度。吾人將分別製作p-side up及p-side down結構之磷化鋁銦鎵發光二極體,並針對其光、電特性及熱散逸能力於兩者間相互比較。
經二次晶圓貼合後,元件之電性仍可處於正常工作之範圍, p-side up LED若以銀為金屬鏡面時於注入電流300 mA可獲得最佳之光強度約5453 mcd及光輸出功率51 mW。另外,於p-side up及p-side down LED之比較,可清楚得知p-side up LED於光特性之表現較優於p-side down LED。但其於熱散逸之能力則較差於p-side down LED.

For red LEDs, the AlGaInP epitaxy layer are commonly grown on GaAs substrate (sub.) for lattice constant matching requirement. But GaAs sub. is an absorbing substrate for visible light and low thermal-conductivity material. In the past, epitaxy layer transferred to a thermal-dissipation substrate by wafer bonding technique and removed GaAs sub. for solving light absorbing and low thermal-conductivity. It would be formed a p-side down structure, which could not use GaP as a good window layer.
In this thesis, we used twice wafer bonding technique to transfer epitaxy layers to a higher thermal conductivity substrate with metal reflective mirror by a transparent adhesion and formed p-side up LED structure. We fabricated p-side up and p-side down AlGaInP LEDs, respectively, and compared with optical-electral characteristics and thermal-dissipation ability.
P-side up LEDs always work well after twice wafer bonding. When injection current is 300 mA , it could obtained the best brightness 5453 mcd and light output power 51 mW by Ag mirror. P-side up LEDs are better than p-side down LEDs on optical characteristics, but its thermal conductivity ability is worse than p-side down LEDs.
其他識別: U0005-3008200610152900
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.