Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4126
DC FieldValueLanguage
dc.contributor洪瑞華zh_TW
dc.contributorRay-Hua Horngen_US
dc.contributor何佩勳zh_TW
dc.contributorpei -xun heen_US
dc.contributor.advisor貢中元zh_TW
dc.contributor.advisorzhong -yuan gongen_US
dc.contributor.author陳正諭zh_TW
dc.contributor.authorchen, zheng -yuen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:27:04Z-
dc.date.available2014-06-06T06:27:04Z-
dc.identifierU0005-3101200723024800zh_TW
dc.identifier.citation[1] Po-Lun Chen,“ Ion-Charges Effects on the Physical Properties of Liquid Crystal Cells ” , PH.D Dissertation in NCTU (2000). [2] 高建賢, “ Study on the flicker phenomena of TN-LC cells in ac driving electric fields ” , Master dissertation in NCTU (2000). [3] Herbert De Vleeschouwer, F. Bougrioua, H. Pauwels , “Industrial applications of ion transport measurements in LCD”, L.C., Vol.21, No.1, p.133-142 (1996). [4] G. Stojmenovik, S. Vermael, K. Neyts, R. van Asselt, and A. R. M. Verschueren, “Dependence of the lateral ion transport on the driving frequency in nematic liquid crystal displays”, J. Appl. Phys., Vol. 96, 3601, (2004). [5] G. Stojmenovik, K. Neyts, S. Vermael, A. R. M. Verschueren, and R. van Asselt, “The influence of the driving voltage and ion concentration on the lateral ion transport in nematic liquid crystal displays”, Jpn. J. Appl. Phys. Vol. 83, pp.2013 (2004). [6] Atsushi Sawada, et al“ Novel Characterizatin Method of Ions in Liquid Crystal Materials by Complex Dielectric Constant Measurements ” ,Jpn. J. Appl. Phys., Vol.38, pp.1423-1427, part.1, NO.3A, March (1993). [7] H. Mada, and K. Osajima, “Time response of namatic liquid-crystal cell in a switched de electric field,”, J.Appl. Phys., 60(9), 3111 (1986). [8] Shuichi Murakam, et al “ Dielectric properties of nematic liquid crystal in the ultralow frequency regime”, J. Appl .Phys., 80(11), December (1996). [9] M. Oh-e, K. Kondo, and Y. Kando, “Theoretical consideration of the drop in threshold voltage at low frequencies in nematic liquid crystals”, Liquid Crystals 17(1), 95(1994). [10] C. Colpaert, B. Maximus, and A. De Meyere, “Adequate measuring techniques for ions in liquid crystal layers”. Liq. Cryst. 21, 133 (1996). [11]紀國鍾,鄭晃忠,”液晶顯示器技術手冊”, 經濟部技術處發行。 [12] S. Nagata, E. Takeda, Y. Nan-no, T. Kawaguchi, Y. Mino, A. Otsuka, and S. Ishihara, “Capacitively coupled driving of TFT-LCD”, SID 89 Digest, 242(1989). [13] Yang -An Wu, “The Influence of Alignment Layer on Ionic Charge Effect in Liquid Crystal Cells ”, Master Dissertation in NCTU(1999). [14] T. Fiske, M. Hack, R. A. Martin, and H. Steemers, “Analysis of transient optical response of active-matrix LCDs”, SID Digest, XXVI, 743 (1995). [15] N. Sasaki, “A new measurement method for ion density in TFT-LCDs”, Mol. Cryst. Liq. Cryst. 367, 671 (2001). [16] G. Stojmenovik, K. Neyts, S. Vermael, and A. Verschueren, “A new method for measuring ion density in nematic LCDs”, Conference Record of the 23th International Display Research Conference, 72, (2003). [17] M. Oh-e, K. Kondo, and Y. Kando, “Theoretical consideration of the drop in threshold voltage at low frequencies in nematic liquid crystals”, Liq. Cryst., 17, 95 (1994). [18] H. De Vleeschouwer, A. Verschueren, F. Bougrioua, R. van Asselt, E. Alexander, S. Vermael, K. Neyts, and H. Pauwels, “Long-term Ion Transport in Nematic Liquid Crystal Displays”, Jpn. J. Appl. Phys., Part 1, 40, 3272 (2001). [19] H. De Vleeschouwer, A. Verschueren, F. Bougrioua, K. Neyts, G. Stojmenovik, S. Vermael, and H. Pauwels, “Dispersive Ion Generation in Nematic Liquid Crystal Displays”, Jpn. J. Appl. Phys., Part 1, 41, 1489 (2002). [20] K. H. Yang, “Charge retention of twisted nematic iquidcrystal displays”, J. Appl. Phys., 67 (1), 36, 1990. [21] M. Bremer, S. Naemura, and K. Tarumi, “Model of Ion Solvation in Liquid Crystal Cells”, Jpn. J. Appl. Phys., Part 2, 37, L88 (1998). [22] S. Naemura, “Liquid-crystal-material technologies for advanced display applications”, Journal of the SID, 8(1), 5 (2000). [23] S. Naemura and A. Sawada, “Ion Generation in Liquid Crystals under Electric Field”, Mol. Cryst. Liq. Cryst., 346, 155 (2000). [24] A. Lien, C.-J. Chen, H. Inoue, and Y. Saitoh, “Image sticking of LCDs”, SID International Symposium Digest of Technical Papers, XXVIII, 203 (1997). [25] S. Takahashi, “The investigation of a dc induced transient optical 30-Hz element in twisted nematic liquid-crystal displays”, J. Appl. Phys., 70, 5346 (1991). [26] P-L. Chen, S.-H. Chen, and F.-C. Su, “An effective method for evaluating image-sticking effect by directly optical measurement on LCD modules”, Eurodisplay ’99 Digest, 315 (1999). [27] H. De Vleeschouwer, B. Verweire, K. D’Have, and H. Zhang, “Electrical and Optical Measurement of the Image Sticking Effect in Nematic LCDs”, Mol. Cryst. Liq. Cryst., 331, 567 (1999). [28] H. De Vleeschouwer, F. Bougrioua, H. Pauwels, “Image sticking theories and interpretation of measurements”, Conference Record of the 19th International Display Research Conference, 473,(1999). [29] H. De Vleeschouwer, F. Bougrioua, H. Pauwels, “Image Sticking Simulations in Nematic Liquid Crystal Displays”, Proceedings of the Electronic Information Displays Conference, Vol. 2, 30 (1999). [30] H. De Vleeschouwer, F. Bougrioua, and H. Pauwels, “Importance of Ion Transport in Industrial LCD Applications”, Mol. Cryst. Liq. Cryst., 360, 29 (2001). [31] M. Oh-e and K. Kondo, “The in-plane switching of homogeneously aligned nematic liquid crystals”, Liq. Cryst., 22, 379 (1997). [32] N. A. J. M. Van Aerle, “Influence of Polyimide Orientation Layer Material on the Liquid Crystal Resistivity in LCDs”, Mol.Cryst. Liq. Cryst., 257, 193 (1994). [33] S. Murakami and H. Naito, “Charge Injection and Generation in Nematic Liquid Crystal Cells”, Jpn. J. Appl. Phys., Part 1, Vol.36, pp. 773-776, (1997). [34] Yang -An Wu, “The Influence of Alignment Layer on Ionic Charge Effect in Liquid Crystal Cells ”, Master Dissertation in NCTU(1999). [35] B. Maximus,E. De Ley, A. De Meyere, H. Pauweis, “A more refined simulation program for nematic liquid crystal displays”, Ferroelectrics, pp.103-112 (1991). [36] B. Maximus, P. Vetter, H. Pauweis, “Unusual Voltage-holding ratio characteristics using in-plane switching of nematic liquid crystals” , IEEE Journal of selected topics in quantum electronics, 5249, p.53-56 (1991). [37] C. Colpaert, B. Maximus, A. De Meyere,“Dynamic behavior of twisted nematic liquid crystals”, Mol. Cryst. Liq. Cryst., Vol. 21, pp. 133 -142 (1997).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4126-
dc.description.abstract以往對於STN LCD的光電特性研究,大多是調整不同的驅動電壓來分析STN LCD之各種光電特性及殘影現象,而本論文的研究是在於調整不同的共通電壓頻率,來研究STN LCD的光電特性及殘影。 本論文使用3種不同液晶材料,並使其有相同的製程流程,製作成STN LCD樣品。以不同的共通電壓頻率來量測STN LCD樣品,並比較有加直流偏壓(dc bias stress)與未加直流偏壓時,量測共通電壓頻率對起始電壓、飽和電壓及液晶反應時間與穿透率等各種特性之影響,經由以上各種量測,可分析各支液晶材料的光電特性及殘影問題,由量測結果得知:MH液晶材料適合可運用於省電產品,而EK液晶材料則適合運用於快速反應之產品。zh_TW
dc.description.abstractConventional studies on electro-optical characteristics of STN-LCDs focused on effects of driving voltage modulation. In this thesis, effects of frequency modulation of the common voltage on electro-optical characteristics and image sticking of STN-LCDs have been analyzed. In this work, three different types of liquid crystal were used to make the STN-LCDs. The threshold voltage, the saturation voltage, the response time, and the transmission of STN-LCDs were measured under different Vcom frequencies with or without the dc bias stress before measurement. Based on the measurement results, the electro-optical characteristics and image sticking of STN LCDs have been analyzed. It is found that MH type liquid crystal has lower threshold voltage and saturation voltage and can be used for low-power products, and EK type liquid crystal has faster response time and can be used for fast-response-time products.en_US
dc.description.tableofcontents摘要................................................................................................................Ⅰ Abstract...........................................................................................................Ⅱ 誌謝.................................................................................................................Ⅲ 目錄.................................................................................................................Ⅴ 圖目錄........................................................................................................... Ⅶ 表目錄.............................................................................................................Ⅷ 第一章 緒論................................................................................................1 1-1前言..................................................................................................1 1-2 液晶盒中離子的主要來源...........................................................2 1-3 低頻時離子效應對LCD的影響..................................................3 1-4 離子效應模型介紹.........................................................................6 1-5 電壓與穿透率的量測.....................................................................7 1-6 實驗動機..........................................................................................8 第二章 實驗方法..........................................................................................10 2-1 STN LCD樣品製作......................................................................10 2-2 DMS量測設備簡介......................................................................12 2-2-1電壓對穿透率的量測(V-T Curve).................................12 2-2-2 液晶的反應時間量測(R-T Curve) ...............................13 2-2-3 穿透率的量測...................................................................13 第三章 實驗結果與討論分析...............................................................14 3-1 頻率對起始電壓與飽和電壓的量測.........................................14 3-2頻率對液晶反應時間的量測.......................................................16 3-3 頻率對穿透率的量測...................................................................17 第四章 結論..................................................................................................18 參考文獻........................................................................................................19 圖目錄 圖1-1. 穿透率對電壓關係圖....................................................................23 圖1-2. 響應時間定義圖............................................................................23 圖1-3. 離子電荷在直流的電壓下運動示意圖.....................................24 圖1-4. 電雙層模型中離子在液晶盒中的分佈圖.................................24 圖1-5. EDL的原理圖...............................................................................25 圖2-1. LCD cell的電極圖形....................................................................26 圖2-2. 吸收軸於配向研磨角度關係......................................................26 圖2-3. STN LCD製程圖..........................................................................27 圖2-4. DMS 儀器外觀圖........................................................................28 圖2-5. DMS 內部觀視圖.........................................................................29 圖2-6. 量測示意圖......................................................................................30 圖2-7. 量測接法圖.....................................................................................30 圖2-8. 量測接法圖.....................................................................................31 圖2-9. 量測接法圖.....................................................................................31 圖3-1. 頻率對Vth電壓分析圖................................................................32 圖3-2. 頻率對Vsat電壓分析圖...............................................................33 圖3-3. 頻率對Vth分係圖(STN LCD給於直流偏壓).........................34 圖3-4. 頻率對Vsat分係圖(STN LCD給於直流偏壓).......................35 圖3-5. 頻率對液晶上昇時間分析圖.....................................................36 圖3-6. 頻率對液晶下降時間分析圖.....................................................37 圖3-7. 頻率對液晶上昇時間分析圖(STN LCD 給予直流偏壓) ...38 圖3-8. 頻率對液晶下降時間分析圖(STN LCD 給予直流偏壓)....39 圖3-9. 頻率對液晶反應時間分析圖......................................................40 圖3-10. 頻率對液晶反應時間分析圖(STN LCD給予直流偏壓) ....41 圖3-11. 頻率對穿透率分析圖..................................................................42 圖3-12. 頻率對穿透率分析圖(STN LCD 給予直流偏壓) ...............43 表目錄 表3-1 各液晶材料的電壓特性比較..........................................................44 表3-2 各液晶材料的反應時間特性比較.................................................44zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3101200723024800en_US
dc.subjectSTN LCDen_US
dc.subject共通電壓頻率zh_TW
dc.subjectCommon Voltage Frequencyen_US
dc.subject光電特性zh_TW
dc.titleSTN LCD在不同共通電壓頻率下之光電特性研究zh_TW
dc.titleStudy on Electro-Optical Characteristics of STN-LCDs under Different Common Voltage Frequencyen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:精密工程研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.