Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4130
DC FieldValueLanguage
dc.contributor洪瑞華zh_TW
dc.contributor胡正中zh_TW
dc.contributor.advisor武東星zh_TW
dc.contributor.author黃勝祥zh_TW
dc.contributor.authorHuang, Sheng-Siangen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:27:05Z-
dc.date.available2014-06-06T06:27:05Z-
dc.identifierU0005-0502200813410500zh_TW
dc.identifier.citation[1] 吳孟奇,洪勝富,連振炘,龔正譯, “半導體元件” ,東華書局 (2001). [2] 李世鴻, “半導體工程原理” ,全威圖書 (1997). [3] E. Kandler, G. Grabhoff, and K. Drescher, “Characterization of Plasma in an Inductively Coupled High-Dense Plasma Source”, Surf. Coat. Technol., Vol. 74, pp. 539-545 (1995). [4] O. A. Popov, “High Density Plasma Sources,” Noyes Publications, (1995). [5] I. Hussla, K. Enke, H. Grunwald, G. Lorenz, and H. Stoll., “In Situ Silicon-Wafer Temperature Measurements During RF Argon-Ion Plasma Etching Via Fluoroptic Thermometry,” J. Phys. D: Appl. Phys., Vol. 20, pp. 889-896 (1987). [6] J. F. Daviet, and L. Peccoud, “Heat Transfer in Microelectronics Plasma Reactor,” J. Appl. Phys., Vol. 73, No. 3, pp. 1471-1479 (1993). [7] M. M. Yovanovich, “Thermal Contact Correlations Spacecraft Radiative Transfer and Temperature Control, Progress in Astronautics and Aeronautics,” Vol. 83, edited by T. E. Horton, AIAA, New York (1982). [8] Kurt A. Olson, David E. Kotecki, and Anthony J. Ricci, “Characterization Modeling and Design of an Electrostatics Chuck with Improved Wafer Temperature Uniformity,” United States Patent 5675471 (1997). [9] Hong ching Shan, Bryan Y. Pu, Hua Gao, Kuang Han Ke, J. Lewis, M. Welch, and C. Deshpandey, “Process Kit and Wafer Temperature Effects on Dielectric Etch Rate and Uniformity of Electrostatic Chuck,” J. Vac. Sci. Technol. B, Vol. 14, No.1, pp. 521-526, (1996). [10] Hee Hwan Choe, “Basic Study of A Glass Substrate in Dry Etching System,” Journal of the Korean Physical Society, Vol. 48, No. 5, pp. 982-984 (2006). [11] Mei Sun, C. Gabriel, “Direct Wafer Temperature Measurements for Etch Chamber Diagnostics and Process Control,” IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings, pp. 134-139 (2002). [12] N. Nelson-Fitzpatrick, K. Westra, P. Li, S. McColman, N. Wilding, and S. Evoy, “Fabrication of Nanoelectromechanical Resonators Using a Cryogenic Etching Technique,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol. 24, No. 6, pp. 2769-2771 (2006). [13] M. Klick, M. Bernt, “Microscopic Approach to an Equation for The Heat Flow Between Wafer and E-chuck,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol. 24, No. 6, pp. 2509-2517 (2006). [14] K. Denpoh, “Modeling of Rarefied Gas Heat Conduction Between Wafer and Susceptor,” IEEE Transactions on Semiconductor Manufacturing, Vol. 11, Issue 1, pp. 25-29 (1998). [15] Yoshihisa Iba, Fumiaki Kumasaka, Hajime Aoyama, Takao Yaguchi, and Masaki Yambe, “Pattern Etching of Ta X-ray Mask Absorber on SiC Membrane by Inductively Couple Plasma,” Japanese Journal of Applied Physics Vol. 37, L824-L826 (1998). [16] P. M. Banks, “Plasma Temperatures During Reactive Ion Etching,” Microelectronic Engineering, Vol. 11, No. 1-4, pp. 603-606 (1990). [17] M. F. Laudon, K. A. Thole, R. L. Engelstad, D. J. Resnick, K. D. Cummings, and W. J. Dauksher, “Thermal Analysis of an X-ray Mask Membrane in a Plasma Environment,” Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, Vol. 13, Issue 6, pp. 3050-3054 (1995). [18] E. J. Weisbrod, W. J. Dauksher, D. Zhang, S. Rauf, P. J. S. Mangat, P. L. G. Ventzek, K. H. Smith, S. B. Clemens, C. J. Martin and R. L. Engelstad, “Thermal Modeling of Extreme Ultraviolet and Step and Flash Imprint Lithography Substrates During Dry Etch,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol. 20, No 6, pp. 3047-3052 (2002). [19] Calvin T. Gabriel, “Wafer Temperature Measurements During Dielectric Etching in a MERIE Etcher,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol. 20, No 4, pp. 1542-1547 (2002). [20] 龍文安,“積體電路微影製程”,高立圖書有限公司 (1998). [21] 羅正忠,張鼎張,“半導體製程技術導論”,台灣培生教育出版有限公司 (2002). [22] 施敏 原著,黃調元譯,“半導體元件物理與製作技術”,交大出版社 (2002). [23] D. L. Flamm, G. K. Herb, “Plasma Etching Technology”, An Overview, Academic Press, Inc., (1989). [24] 葉孟欣,國立交通大學碩士論文 (2002). [25] L. E. Samuels, “Metallographic Polishing by Mechanical Methods”, 3rd Edition. [26] X. Dongzhu, Z. Dezhang, P. Haochang, X. Hochang, X. Hongjie, R. Zongxin, “Generation of Phonons in High-Power Ferromagnetic Resonance Experiments”, J. Phys. Appl. Phys. Vol. 31, pp.1647-1656 (1998). [27] J. W. Kim, Y. C. Kim, W. J. Lee, “Reactive Ion Etching Mechanism of Plasma Enhanced Chemically Vapor Deposited Aluminum Oxide Film in CF4/O2 Plasma”, J. Appl. Phys. Vol. 78, pp. 2045-2049 (1995). [28] E. Kandler, G. Grabhoff, and K. Descher, “Characterization of Plasma in an Inductively Coupled High-Dense Plasma Source”, Surf. Coat. Technol. Vol. 74, pp. 539-545 (1995). [29] M. A. Lieberman, and A. J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, John Wiley & Sons Inc, (1994). [30] 張勁燕,“半導體製程設備”,五南出版有限公司 (2002). [31] Joseph C. Martz, Dennis W. Hess, and Eugene E. Petersen “A Generalized Model of Heat Effects In Surface Reactions. II. Application to Plasma Etching Reactions” J. Appl. Phys. Vol. 72, pp. 3289-3293 (1992). [32] Y. H. Lee, H. S. Kim, and G. Y. Yoem, “Etch Characteristics of GaN Using Inductively Coupled Cl2/Ar and Cl2/BCl3 Plasmas”, J. Vac. Sci. Technol. Vol. 16, pp. 1478-1482 (1998). [33] J. Etrillard, F. Heliot, P. Ossart, M. Juhel, and G. Patriarche, “Sidewell and Surface Induced Damage Comparison between Reactive Ion Etching and Inductive Plasma Etching of InP Using a CH4/H2/O2 Gas Mixture”, J. Vac. Sci. Technol. Vol. 14, pp. 1056-1061 (1996). [34] R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schruman, “Inductively Couple Plasma Etching of GaN”, Appl. Phys. Lett. 8 Vol. 69, pp. 1119-1121 (1996). [35] S. A. Smith, C. A. Wolden, M. D. Bremser, A. D. Hanser, R. F. Davis, and W. A. Lampert, “High Rate and Selective Etching of GaN, AlGaN, AlN Using an Inductively Couple Plasma”, Appl. Phys. Lett. 71, pp.3631-3633 (1996).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4130-
dc.description.abstract本論文主要探討基座冷卻結構系統對電漿蝕刻溫度與製程之影響。由於電漿製程中因電漿高能離子的轟擊,導致使基材產生高溫,過高的溫度會造成基材元件的損壞,進而影響基材元件製程的良率,因此電漿蝕刻過程中應設法避免基材溫度過高。由於背氦結構系統有良好冷卻效應,故探討基座冷卻結構系統對電漿蝕刻製程所產生的影響,同時研究在有或無基座冷卻結構系統下,圖案化藍寶石基板蝕刻速率及製程結果等。 從本論文的研究結果可發現,在基座冷卻結構部分,從分析結果顯示間隙通入氦氣3.5 sccm維持壓力在3 Torr及冰水機設定溫度0°C時,基座溫度可以降低至60°C,而從電漿參數改變顯示,ICP功率所產生的熱能對基座冷卻影響能力最強。在蝕刻藍寶石晶片部分,電漿參數為BCl3在BCl3/Cl2混氣比例占60%,總流量50 sccm,配合ICP功率1000 W、下電極偏壓300 V、工作壓力4 mTorr下,可得到67.5 nm/min之最佳蝕刻速率。zh_TW
dc.description.abstractThis thesis explores the effect of backside He cooling stage system on the temperature and process of plasma etching. The substrate temperature was risen from the plasma bombardment and high-energy of ion during the plasma process. The higher temperature will cause device damage and influence the etching rate and residual photoresist removal. So, it is important to prevent stage temperature increase during the plasma etching process. It has been reported that the backside He cooling system have satisfactory cooling effect. This study examines the influence of backside He cooling system on the performance of plasma etching. The effect of etching rate on patterned sapphire substrate with and without in backside He cooling in the structure system was also described. We have designed a backside He cooling stage system and to explore the effect of decreasing the substrate temperature in the plasma etching process. The cooling characteristics were investigated by varying the cooling parameters, such as He flow passes over the gap, He pressure, chiller temperature and plasma recipe. After the backside He cooling stage system has stable cooling function, it was installed in the inductively coupled plasma system (ICP) system to examine the best etching rate of sapphire substrate. The experimental results indicated that the backside He cooling system could make stage temperature reduced to 60C when the He flow is 3.5sccm, the pressure maintains 3Torr and chiller set 0C. Based on the plasma parameters profile, the data showed that the inductively coupled plasma system power had a significant effect upon the cooling ability. It was also found that the etching sapphire wafer can achieve the best etching rate under the following etching parameters: 60% BCl3 in BCl3/Cl2 mixture, total gas flow of 50 sccm, ICP power of 1000 W, DC-Bias of 300V and work pressure of 4 m Torr.en_US
dc.description.tableofcontents書名頁 審核頁 授權頁 誌謝辭 i 摘要 ii Abstract iii 目次 v 表目次 viii 圖目次 ix 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 1.3 文獻回顧 3 第二章 實驗系統及電漿原理和熱傳分析 5 2.1 電漿基本原理 5 2.1.1 電漿產生與特性 7 2.1.2 電漿蝕刻機制 9 2.2 系統設計 13 2.2.1 反應腔體設計 14 2.2.2 傳輸腔體設計 14 2.2.3 基座冷卻結構設計 15 2.2.4 製程參數的影響 15 2.3 基座冷卻結構熱傳分析 17 2.3.1 熱傳導 17 2.3.2 熱對流 18 2.3.3 熱輻射 19 第三章 實驗流程 21 3.1 基座冷卻結構系統熱傳實驗 21 3.1.1 基座尺寸與性質 21 3.1.2 承載盤尺寸與性質 22 3.1.3 散熱氣體性質與間隙影響 22 3.1.4 基座冷卻結構系統實驗步驟 23 3.2 電漿蝕刻實驗 25 3.2.1 有基座冷卻結構系統電漿蝕刻實驗 25 3.2.2 無基座冷卻結構系統電漿蝕刻實驗 26 3.3 基座冷卻結構系統對蝕刻製程結果實驗 28 3.3.1 有基座冷卻結構系統製程實驗 28 3.3.2 無基座冷卻結構系統製程實驗 29 第四章 結果與討論 30 4.1 基座冷卻結構系統熱傳結果 30 4.1.1 氦氣莫耳數的影響 30 4.1.2 ICP功率的影響 30 4.1.3 下電極DC偏壓的影響 31 4.1.4 冰水機溫度的影響 33 4.2 電漿蝕刻參數的影響 34 4.2.1 有基座冷卻結構系統電漿蝕刻的影響 34 4.2.2 無基座冷卻結構系統電漿蝕刻的影響 37 4.3 基座冷卻結構對蝕刻製程結果影響 39 4.3.1 無基座冷卻結構系統情形的影響 39 4.3.1 有基座冷卻結構系統情形的影響 40 第五章結論 41 參考文獻 42 表目次 表一 氦氣流量與壓力關係表 47 圖目次 圖 1-1 在不同間隙接觸壓力對矽晶片溫度變化的影響 48 圖 1-2 間隙填充氣體的壓力對晶片溫度變化的影響 49 圖 1-3 不同的偏壓對晶片溫度變化的影響 50 圖 1-4 偏壓對晶片溫度上升大小的影響 51 圖 1-5 Daviet和Peccoud實驗裝置簡圖 52 圖 1-6 不同製程氣體與壓力對熱阻的影響 53 圖 2-1 電漿蝕刻示意圖 54 圖 2-2 蝕刻型態示意圖 55 圖 2-3 感應式耦合電漿機台示意圖 56 圖 2-4 反應腔下端簡圖 57 圖 2-5 輸送腔簡圖 57 圖 2-6 基座冷卻結構簡圖 58 圖 2-7基座冷卻結構氦氣流量及氦氣壓力控制圖 58 圖 2-8 熱傳導 59 圖 2-9 熱對流 59 圖 2-10 熱輻射 59 圖 2-11 分子運動引起能量擴散與熱傳導的關係圖 60 圖 2-12 自由對流 61 圖 2-13 強制對流 61 圖 3-1 鉗制環上升情形 62 圖 3-2 鉗制環將承載盤壓置於基座情 62 圖 3-3 感溫貼紙 63 圖 4-1不同氦氣莫耳數對基座溫度影響關係圖 64 圖 4-2不同氦氣莫耳數對基座溫度影響趨勢圖 65 圖 4-3不同ICP功率對基座溫度影響關係圖 66 圖 4-4不同ICP功率對基座溫度影響趨勢圖 67 圖 4-5不同下電極 DC偏壓對基座溫度影響關係圖 68 圖 4-6不同下電極 DC偏壓對基座溫度影響趨勢圖 69 圖 4-7不同冰水機設定溫度對基座溫度影響關係圖 70 圖 4-8不同冰水機設定溫度對基座溫度影響趨勢圖 71 圖 4-9 BCl3在(BCl3 + Cl2)混合比例量對蝕刻速率的影響(有基座冷卻結構系統)72 圖 4-10反應腔體內工作壓力對蝕刻速率的影響(有基座冷卻結構系統)73 圖 4-11 ICP功率變化對蝕刻速率的影響(有基座冷卻結構系統)74 圖 4-12下電極DC偏壓變化對蝕刻速率的影響(有基座冷卻結構系統) 75 圖 4-13 BCl3在(BCl3 + Cl2)混合比例量對蝕刻速率的影響(無基座冷卻結構系統)76 圖 4-14 反應腔體內工作壓力對蝕刻速率的影響(無基座冷卻結構系統)77 圖 4-15 ICP功率變化對蝕刻速率的影響(無基座冷卻結構系統)78 圖 4-16下電極DC偏壓變化對蝕刻速率的影響(無基座冷卻結構系統)79 圖 4-17無基座冷卻結構下蝕刻圖案化藍寶石基板側視圖80 圖 4-18良好基座冷卻結構下蝕刻圖案化藍寶石基板圖81 圖 4-19良好基座冷卻結構下蝕刻圖案化藍寶石基板尺寸圖81zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502200813410500en_US
dc.subjectHeat Transferen_US
dc.subject熱傳遞zh_TW
dc.subjectBackside He Cooling Stageen_US
dc.subjectInductively Coupled Plasma(ICP)en_US
dc.subject背氦冷卻基座zh_TW
dc.subject感應式耦合電漿zh_TW
dc.title基座冷卻結構設計及其在電漿蝕刻製程之應用zh_TW
dc.titleDesign of Backside He Cooling Stage and It is Application to Plasma Etching Processen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.