Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4132
DC FieldValueLanguage
dc.contributor洪瑞華zh_TW
dc.contributor曾堅信zh_TW
dc.contributor.advisor武東星zh_TW
dc.contributor.advisorDong-Sing Wuuen_US
dc.contributor.author吳怡龍zh_TW
dc.contributor.authorWu, I-Lungen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T06:27:05Z-
dc.date.available2014-06-06T06:27:05Z-
dc.identifierU0005-1106200715075700zh_TW
dc.identifier.citation[1] 許榮宗, “白光LED 製作技術走勢,” 工業材料雜誌220期, 台北,台灣, pp. 148~149, 2005. [2] S. Shionoya, and M. Y. William, “Phosphor handbook,” CRC Press LLC. New York, p. 4, 1998. [3] 劉如熹, 林益山, 廖秋峰, “LED 照明光源展望(一):從藍光紫外光到白光,” 工業材料雜誌220期, 台北, 台灣, p. 139, 2005. [4] 楊素華, “螢光粉在發光上的應用, ”科學發展358期, 台北, 台灣, pp. 66-71, 2003. [5] D. A. Skoog, and J. J. Leary, “Principles of instrumental analysis,” Saunders College Pub. pp. 176-177, 1992. [6] J. A. DeLuca, “An introduction to luminescence in inorganic solids,” J. Chem. Educ, Vol. 57, Number 8, pp. 541-545, 1980. [7] R. C. Ropp, “Luminescence and the solid state,” Elsevier Science Publishers. p. 245, 1991. [8] H. C. Lee, “Introduction to Color imaging science,” Cambridge, UK, New York Cambridge University Press, p. 272, 2005. [9] 鄭佐柏, “色彩理論與數位影像,” 新文京開發出版股份有限公司, pp. 60-66, 2004. [10] LEDTRONICS, INC. 網站: http://www.ledtronics.com/datasheets/Pages/chromaticity/097b.htm [11] 鄭州大學包裝工程系網站: http://big5.cgan.net/book/books/print/packcolor/link/5-4-2.html [12] UNCC網站: http://personal.uncc.edu/lagaro/cwg/color/AdditivePri.gif http://personal.uncc.edu/lagaro/cwg/color/ SubtractivePri.gif [13] K. Murakami, T. Taguchi, and M. Yoshino , “White illumination characteristics of ZnS-based phosphor materials excited by InGaN-based ultraviolet light-emitting diode,” Proc. SPIE Vol. 4079, pp.112-119, 2000. [14] T. Taguchi, “ Japanese semiconductor lighting project based on ultraviolet LED and phosphor systems, ” Proc. SPIE Vol. 4445, pp. 5-12, 2001. [15] Y. Uchida and T. Taguchi, “ Theoretical and experimental luminous characteristics of white LEDs composed of multiphosphors and near-UV LED for lighting,” Proc. SPIE Vol. 4996, pp. 166-173, 2003. [16] H. Lee, Y. Park, M. Chang, G. Kim, S. Hong, H. Won, J. Lee, and Y. Oh, “ The enhancement of light efficiency using modified phosphor that is coated sub-micro size sulfonated polystyrene beads,” Proc. SPIE Vol. 6321, pp. 1-6, 2003. [17] Y. Gu and N. Narendran , “A noncontact method for determining junction temperature of phosphor-converted white LEDs ,” Proc. SPIE Vol. 5187, pp. 107-114, 2004. [18] C. C. Miller, Y. Zong, and Y. Ohno , “LED photometric calibrations at the National Institute of Standards and Technology and future measurement needs of LEDs,” Proc. SPIE Vol. 5530, pp. 69-79, 2004. [19] N. Narendran, Y. Gu, and R. Hosseinzadeh, “Estimating junction temperature of high-flux white LEDs,” Proc. SPIE Vol. 5366, pp. 158-160, 2004. [20] N. Narendran, “Improved performance white LED,” Proc. SPIE Vol. 5941, pp. 1-6, 2005. [21] S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “ YAG glass-ceramic phosphor for white LED (I): background and development,” Proc. SPIE Vol. 5941, pp. 1-7, 2005. [22] S. Fujita, S. Yoshihara, A. Sakamoto, S. Yamamoto, and S. Tanabe, “ YAG glass-ceramic phosphor for white LED (II): background and development,” Proc. SPIE Vol. 5941, pp. 1-6, 2005. [23] W. Falicoff, J. Chaves, and B. Parkyn, “PC-LED luminance nhancement due to phosphor scattering,” Proc. SPIE Vol. 5942, pp. 1- 15, 2005. [24] B. Braune, H. Brunner, J. Strauss, and K. Petersen , “Light conversion in opto semiconductor devices: from the development of luminous materials to products with customized colors ,” Proc. SPIE Vol. 6013, pp. 1-8, 2005. [25] B. Parkyn, J. Chaves, and W. Falicoff , “Remote phosphor with recycling blue-pass mirror”, Proc. SPIE Vol. 5942, pp. 1-12, 2005. [26] H. Y. Chou, T. H. Hsu, and T. H. Yang , “Effective method for improving illuminating properties of white-light LEDs ,” Proc. SPIE Vol. 5739, pp. 33-41, 2005. [27] E. Radkov, Z. Brown, I. Hausmann, and J. Reginelli , “Performance of white PC-LEDs based on violet chips, ” Proc. SPIE Vol. 6337, pp. 1-4, 2006. [28] D. Kan, E. Wu, and D. M. Wang, “Design optimization and experimental verification of white-light-emitting diodes using multiple phosphor films, ” Proc. SPIE Vol. 6337, pp. 1-8, 2006. [29] Lambda Research Corporation. Trace pro 4.0 使用手冊, p. 4.14, 2007.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4132-
dc.description.abstract高效率白光發光二極體是在實現固態照明道路上不可或缺的關鍵項目,在目前產生白光二極體的各種方式中,利用螢光粉轉換是最常見的一種方式,大部分的商業用白光二極體封裝方式是將螢光粉散佈在矽膠中並灌注在發光二極體晶片周圍,晶片所發出之部份藍光被螢光粉所轉換成黃光,並與另一部份藍光混合後產生白光。 本論文藉由螢光粉置於支架表面之封裝方式,探討發光效率及壽命和傳統封裝之差異。由於背向光被藍光晶片吸收的減少,提高光取出效率,實驗結果顯示其光輸出及發光效率比傳統方式提升17 % 以上;另外在相同色度座標下,螢光粉置於支架表面之封裝方式,所需要的螢光粉濃度較高。故當晶片工作電流上升時,大部份的螢光粉均被藍光光子激發成黃光,並混合成白光,當注入電流由20 mA提升至70 mA時,白光發光二極體之CIE色度座標x, y值只分別偏移0.002及0.004,遠小於傳統封裝方式(x, y值變動範圍各約-0.01),此結果顯示此螢光粉構裝方式具有較穩定的色溫表現,並能簡化白光二極體封裝產業之測試流程。 在本論文中我們同時利用光學模擬軟體Trace Pro來驗證實驗理論及結果,藉由實驗參數,建立光學模擬模型,分析模型觀察面之平面照度圖及燭光分佈圖得到40 %的光輸出提升,在冷熱衝擊試驗及壽命測試,照度及發光效率衰減較傳統封裝減少5 %以上,由此可知螢光粉置於支架表面的封裝概念確實能提升其發光效率及可靠度。zh_TW
dc.description.abstractRecently, high-efficiency white light-emitting diodes (LEDs) have become an important issue in developing practical solid-state lighting applications. Among the methods available for creating white-light LEDs, the phosphor-converted (pc) structure is the most popular packaging. Generally, the phosphor is dispersed within the silicone surrounding the LED die in a white LED package. A portion of the blue light emitted from the InGaN chip is converted by the phosphor to produce the yellow light. The combination of blue and yellow emissions achieves the white light. In this thesis, the effects of remote phosphor structure on the efficiencies and lifetimes of white LED lamps have been investigated. Since the blue light reflected from the remote phosphor layer and absorbed by the chip is reduced, the light extraction efficiency of the LED lamp can be improved. From the measurement result, a 17% improvement in light output has been achieved as compared that of the conventional white LED package. Under the same CIE coordinate, it was found that the LED sample with a remote phosphor package should possess higher phosphor concentration. When the injection current increased from 20 to 70 mA, the CIE (x, y) values shifted only 0.002 and 0.004, whereas both the CIE (x, y) values of conventional LED package shifted about 0.01. This could be due to the fact that more phosphor particles will be excited by the blue photons due to the higher phosphor concentration. These results indicate that the remote phosphor structure has higher stability in color temperature performance which can simplify the test process in the LED packaging line. In the simulation works, we have used a Trace-Pro software based on the ray tracing theory to correlate the experiment results. According to the experimental parameters, a setup of the LED structure model can be established. The incident flux map and cadela distribution plots can then be calculated. It is found that a 40% improvement in light output was obtained as compared with that of the conventional white LED package. This exhibits that the simulation trend can coincide with our present experimental results to some extent. Furthermore, from the results of temperature shock and ambient life tests, the luminance decay rates can be improved over 5% as compared with those of the conventional LED package sample. These results suggest that the remote phosphor structure can authentically increase the efficiency and reliability of white LED lamps.en_US
dc.description.tableofcontents封面內頁 審核頁 授權書 誌謝 i 中文摘要 ii Abstract iii 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 理論基礎與文獻回顧 3 2-1 螢光材料簡介 3 2-1-1 螢光材料的種類 3 2-1-2 螢光粉在發光上的應用 3 2-2 發光機制簡介 6 2-2-1 螢光(fluorescence)與磷光(phosphorescence) 6 2-3 螢光材料的發光原理 7 2-4 螢光粉的發光特性 10 2-5 光與視覺理論 13 2-6 C.I.E. 1931XYZ標準色度學系統 14 2-7 色彩的混合 15 2-7-1 色彩的混合與加減法 15 2-7-2 CIE混色原理 15 2-8 文獻回顧 15 第三章 實驗方法與步驟 19 3-1 實驗材料與儀器 19 3-1-1 實驗材料 19 3-1-2 實驗儀器 19 3-2 製備樣品 20 3-2-1 實驗設計 20 3-2-2 樣品前處理 20 3-2-3 螢光粉置於支架表面 21 3-2-4 螢光粉置於支架中央 21 3-2-5 螢光粉置於支架底部 22 3-2-6 螢光粉均勻分布於支架 22 3-2-7 不摻雜螢光粉 23 3-3 性質量測與分析 23 3-3-1 IS光學量測系統 23 3-3-2 積分球測試 23 3-3-3 常溫測試分析 24 3-3-4 冷熱衝擊分析 24 3-3-5 照度衰減測試 24 第四章 結果與討論 25 4-1 螢光粉層在封裝支架中不同位置之構裝結果 25 4-2 CIE座標圖 25 4-3 發光效率比較 26 4-4 光學模擬分析 27 4-4-1 模型建立 28 4-4-2 光學模擬參數驗證 28 4-4-3 相同CIE色度座標各組之光學模擬 30 4-5 CIE座標對電流分析 31 4-6 輻射效率比較 31 4-7 冷熱衝擊分析 32 4-8 可靠度測試 32 第五章 結論 34 參考文獻 36zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1106200715075700en_US
dc.subjectWhite LEDen_US
dc.subject白光發光二極體zh_TW
dc.subjectRemote Phosphor Structureen_US
dc.subjectPackagingen_US
dc.subjectRay-Tracing Simulationen_US
dc.subject螢光粉zh_TW
dc.subject構裝結構zh_TW
dc.subject光學模擬zh_TW
dc.title螢光粉構裝結構對白光發光二極體特性與壽命之影響研究zh_TW
dc.titleEffects of Phosphor Layer Structure on Performance of White Light-Emitting Diodesen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.