Please use this identifier to cite or link to this item:
標題: 以微拉伸試驗銅薄膜材料之機械疲勞行為
Microtensile fatigue testing of copper thin films
作者: 許凱翔
Shiu, Kai-Shiang
關鍵字: fatigue;疲勞;copper film;microtensile;yield stress;銅薄膜;微拉伸;降伏應力
出版社: 精密工程學系所
引用: 參考文獻 [1].丁志華,管正平,黃新言,戴寶通, “奈米壓痕量測系統簡介”奈 米通訊第九卷第三期 [2].蔡木村,陳伯宜,林淳杰,曾春杰 編譯 “機械冶金(第三版)” 全科技圖書股份有限公司印行 [3]. [4].E. O. Hall, Proc. Phys. Soc. London 643 , 747 (1951) [5].W. D. Nix, Metallurg. Trans. 20A 2217 (1989). [6].R.P.Vinci and J.J.Vlassak,“Mechanical behavior of thin films,” Annu. Rev.Mater. Sci. 26 , 431-62 (1996) [7].B.Taljat, T.Zacharia, G.M.Pharr,” Pile-up behavior of spherical indentations in engineering materials”, Materials Research Society Symposium-Proceedings, vol 522, Fundamentals of Nanoindentation and Nanotribology, p 33-38, 1998 [8].R.P.Vinci and J.J.Vlassak, “Mechanical behavior of thin films,” Annu. Rev. [9].W.D.Nix, “Mechanical Properties of Thin Films” p71- 73, January 2005 [10] W.D.Nix, Metallurg. Trans. 20A 2217 (1-989) [11] J.A.Schweitz, “Mechanical characterization of thin films by micromechanical techniques,” MRS Bulletin 17 (7), 34-45 (1992) [12] T.P.Weihs, S.Hong, J.C.Bravman et al , “Mechanical deflection of cantilever microbeams: a new technique for testing the mechanical properties of thin films,” Journal of Materials Research 3 (5), 931-42 (1988). [13] D.T.Read and J.W.Dally, “Strength, ductility, and fatigue life of aluminum thin films,” International Journal of Microcircuits and Electronic Packaging 16 (4), 313-18 (1993). [14] M.A. Haque and Saif, M.T.A., “In Situ Tensile Testing of nano-scale Specimens in SEM and TEM,” Experimental Mechanics, 42(1), 123-128 (2001). [15] M.A. Haque and Saif, M.T.A., Sensor and Actuator A 97- 98 (2002) 239-245 [16] S.Greek, F.Ericson, S. Johansson et al , “In situ tensile strength measurement of thick-film and thin- film micromachined structures,”8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX. Digest of Technical Papers (IEEE Cat.No.95TH8173) , 56-9 vol.2 (1995). [17] D. T. Read and J. W. Dally, “Strength, ductility, and fatigue life of aluminum thin films,” International Journal of Microcircuits and Electronic Packaging 16 (4), 313-18 (1993). [18] Ming-Tzer Lin, Chi-Jia Tong & Chung-Hsun Chiang, “Design and development of novel electroplating spring frame MEMS structure specimens for the micro- tensile testing of thin film materials” Symposium on Design, Test, Integration and Packaging of MEMS / MOEMS, Italy (2006) [19] Sharpe, W. N. Jr., Yuan, Vaidyanathan, B. Dauskardt, R. R. H. et al. “New test structures and techniques for measurement of mechanical properties of MEMS materials” Proc. SPIE - Int. Soc. Opt. Eng. (USA), Proceedings of the SPIE – The International Society for Optical Engineering, 78-91 (1996). [20] P.G. Sanders et al. Acta mater. Vol. 45, No. 10, pp. 4019-4025 K. (1997) [21] A.K.Jamting et al. “Thin Solid Films”, 304-309 (1997) [22] D.T.Read “Tension-tension fatigue of copper thin films”, Int. J.Fatigue Vol. 20, No. 3, pp. 203-209. 1998 [23] Jie-Hua Zhao et al., Journal of applied physics Vol 87, No 3, (2000) [24] Yong Zhou et al. “Thin Solid Films” 460 175–180 (2004) [25] Ya. M. Soifer et al. Mterials Letters 59, 1434-1438 (2005) [26] Haibo Huang et al “Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers”, Acta mater. 48 (2000) 3261-3269 [27] R.Schwaiger ”Cyclic deformation of polycrystalline Cu films”Philosophical Magazine,Vol.83,No.6,693-710,(2003) [28] M. Legros et al “Microsample tensile testing of nanocrystalline metals”, Philosophical Magazine A, , Vol. 80, No. 4, 1017-1026(2000) [29] G.P.Zhang ”Length-scale-controlled fatigue mechanisms in thin copper films ” Acta Materialia 54 (2006)3127-3139 [30 ant_Stress.htm [31]


Microelectromechanical systems (MEMS) technologies are developing rapidly with increasing study of the design, fabrication and commercialization of microscale systems and devices. While the primary function of the system rely on their electrical capability, the structure integrity of each component is essential for their overall performance and lone term reliability. As feature sizes of these devices continues to decrease, the performance and reliability concern increases. Therefore, accurate knowledge on the mechanical behaviors of thin film materials used for MEMS has become important for successful design and development of MEMS.
During operation of an MEMS, the bridge structures deflected. These deflections are anticipated to reach kHz frequencies and very high cycle numbers can be attained over short time periods. The lifetime prediction with increases in switch cycles is strongly dependent upon the device dimensions and characteristics of structural thin films. Thus, understanding of fundamental observed failure mechanism and mechanical response respected to external loads plays an important role in products design and lifetime prediction of MEMS.
Here , our study focuses on the fatigue property of the copper thin film using microtensile apparatus. The structure is satisfied this setup eliminate the possibility of aiming error and to meet the needs of this experiment. Before the fatigue test, copper thin-films with different thickness are being tested to obtain the relationship between force and strain, from which, Young's modulus , yield stress, and max stress etc… can be obtained. The method of loading feedback control is used to control the boundary values in the fatigue experiment. In the experiment, the copper thin-films with different thickness were constantly kept under strain, and the force applied to them and the frequency of which was applied were kept constant for repeated testing.
We found copper thin-films with different thickness shows no significant difference under fatigue, but it was apparent that a long period in lower mean stress.
其他識別: U0005-1508200723210300
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.