Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4139
標題: 以電熱式致動器驅動之撓性雙穩態機構的設計與分析
Design and Analysis of a Compliant Bistable Mechanism Actuated by an Electro-thermal Actuator
作者: 邱俊達
Qiu, Jun-Da
關鍵字: MEMS;微機電系統;Compliant bistable mechanism;Electro-thermal actuator;撓性雙穩態機構;電熱式致動器
出版社: 精密工程學系所
引用: [1] Lin, L. Y., Shen, J. L., Lee, S. S., and Wu, M. C., 1996, “Surface-micromachined Micro-XYZ Stages for Free-space Micro-optical Bench,” IEEE/LEOS Summer Topical Meetings, Keystone,USA. [2] Wu, M. C., Lin, L. Y., Lee, S. S., and Pister, K. S. J., 1995, “Micromachined Free-space Integrated Micro-optics,” Sensors and Actuators A, vol. 50, pp. 127-134. [3] 國科會精密儀器發展中心,2003,微機電系統技術與應用,初版,精密儀器發展中心出版,新竹市。 [4] Ikuta, K., Maruo, S., and Kojima, S., 1998, “New Micro Stereo Lithography for Freely Movable 3D Micro Structure,” Micro Electro Mechanical Systems, Proceedings of MEMS 98, pp. 290-295. [5] Smits, J. G., 1992, “Design Consideration of a Piezoelectric-on-Silicon Microrobot,” Sensors and Actuators, pp. 129-135. [6] Tatsue, Y., and Kitahara, T., 1991, “Micro-grip System”, Journal of Robotics and Mechatronics, pp. 57-59. [7] Akiyama, T., Collard, D., and Fujita, H., 1997, “Scratch Drive Actuator with Mechanical Links for Self-assembly of Three Dimensional MEMS,” Journal of Microelectromechanical Systems, pp. 10-17. [8] Chu, P. B., and Pister, K. S., 1994, “Analysis of Closed-loop Control of Parallel-plate Electrostatic Microgrippers,” IEEE International Conference on Robotics and Automation, pp. 820-825. [9] Riethmuller, W., and Benecke, W., 1988, “Thermally Excited Silicon Microactuators”, IEEE, pp. 758-763. [10] Comtois, J. J., and Bright, V. M., 1997, “Applications for Surface-Micromachined Polysilicon Thermal Actuators and Arrays,” Sensors and Actuators, pp. 19-25. [11] Fujita, H., 1989, “Microactuators for Micro-motion System,” The Third Toyota Conference, pp. 279-295. [12] Hayashi, T., 1999, “Research and Development of Micromechanisms”, Proceedings of Tenth World Congress on the Theory of Machine and Mechanisms, pp. 18-23. [13] Ballandras, S., Daniau, W., Basrour, S., and Robert, L., 1995, “Deep Etch X-ray Lithography Using Silicon-gold Masks Fabricated by Deep Etch UV Lithography and Electroforming,” Journal of Microelectromechanical Systems, pp. 203-208. [14] Howell, L., and Midha, A., 1994, “A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots,” Transactions of the ASME, vol. 116, pp. 280-290. [15] Wagner, B., Quenzer, H. J., Hoershelmann, S., Lisec, T., and Juerss, M., 1996, “Bistable Microvalve with Pneumatically Coupled Membranes,” Proceedings of IEEE Micro Electro Mechanical Systems, pp. 384-388. [16] Baker, M. S., Lyon, S. M., and Howell, L. L., 2000, “A Linear Displacement Bistable Micromechanism,” Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1-7. [17] Taher, M., and Saif, A., 2000, “On a Tunable Bistable MEMS-Theory and Experiment,” Journal of Microelectromechanical Systems, vol. 9, no. 2., pp. 157-170. [18] Parkinson, M. B., Jensen, B. D., and Roach, G. M., 2000, “Optimization-Based Design of a Fully-Compliant Bistable Micromechanism,” Proceedings of DETC 00 ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Baltimore, pp. 1-7. [19] Sun, X., Farmer, K. R., and Carr, M. N., 1998, “A Bistable Microrelay Based on Twosegment Multimorph Cantilever Actuators,” Proceedings of IEEE Workshop on MEMS, pp. 154-159. [20] Que, L., Park, J. S., and Gianchandani, Y. B., 1999, “Bent-beam Electro-thermal Actuators for High Force Applicators,” Micro Electro Mechanical Systems, MEMS ‘99. Twelfth IEEE International Conference, pp. 17 –21. [21] Guckel, H., Klein, J., Christenson, T., Skrobis, K., Laudon, M., and Lovell, E. G., 1992, “Thermo-Magnetic Metal Flexure Actuators,” Solid-State Sensor and Actuator Workshop, 5th Technical Digest, IEEE, pp. 73 –75. [22] Comtois, J., Bright, V., and Phipps, M., 1995, “Thermal Micro-Actuators for Surface-Micromaching Process,” Proceedings SPIE Micro-machined Devices and Components, vol. 2642, pp. 10-21. [23] Butler, J. T., Bright, V. M., and Cowan, W. D., 1999, “Average Power Control and Positioning of Polysilicon Thermal Actuators,” Sensors and Actuators A, vol. 72, pp. 88-97. [24] Shigeaki Tomonari, Hitoshi Yoshida, Masanao Kamakura, Hiroshi Kawada, Masaaki Saito, Kazuhiro Nobutoki, Jun Ogihara, and Nagao Shuichi, 2002, United States Patent 6384509, “Semiconductor device” , May 7. [25] Wilcox, D. L. and Howell, L. L., 2005 “Fully Compliant Tensural Bistable Micromechanisms (FTBM),” Journal of Microelectromechanical Systems, vol. 14, no. 6, pp. 1223-1235. [26] Yang, Y.-J., Liao, B.-T., and Kuo, W.-C., 2007, “A Novel 2 × 2 MEMS Optical Switch Using the Split Cross-bar Design,” Journal of Micromechanics and Microengineering, pp. 875-882. [27] Mills, A. F., 1995, “Basic Heat and Mass Transfer”, Richard D. Irwin, Inc. , pp. 943-947. [28] White, F. M., 1984, “Heat Transfer,” Addison-Wesley Publishing Company, Inc., pp. 22. [29] Incropera, F. P., and Witt, D. P., 1996, “Fundamentals of Heat and Mass Transfer,” Forth Edition, John Wiley & Sons, Inc., pp. 980-981. [30] Cade, C. M., 1961, “The Thermal Emissivity of Some Materials Used in thermionic value manufacture,” IEEE, vol.8, pp. 56-69. [31] Nathan, D. Masters and Howell, L. L., 2003 “A Self-Retracting Fully Compliant Bistable Micromechanism,” Journal of Microelectromechanical Systems, vol. 12, no. 3, pp. 273-280. [32] Lee, S.-Y., Tung, H..-W., Chen, W.-C., and Fang, W., 2006, “Thermal Actuated Solid Tunable Lens,” IEEE, pp. 2191 –2193.
摘要: 
本文是探討ㄧ個由電熱式致動器驅動之撓性雙穩態機構,此電熱式致動器之主要性能如作動位移量大小、運動方向、致動電流及溫度分佈等,皆為研究探討之對象且在其所有表面均考慮熱傳導、熱對流及熱輻射效應。輸入電流於電熱式致動器後,分析撓性雙穩態機構之位移量以及其反作用力的變化來判斷其是否具有雙穩態特性。
在分析模擬方面,使用國家高速網路與計算中心(NCHC)所提供之ABAQUS 6.4有限元素分析模擬軟體來進行模擬,分析模擬電熱式致動器的穩態溫度場及其結構之變形,並觀察撓性雙穩態機構之位移量以及其反作用力大小的關係。最後,我們提出ㄧ個此撓性雙穩態機構及電熱式致動器的製程。


關鍵字: 微機電系統、撓性雙穩態機構、電熱式致動器

A compliant bistable mechanism is designed in this research. It is actuated by an electro-thermal actuator. The main characteristics of the actuator, such as the amount of displacement, the direction of movement, actuating voltage, and temperature distribution etc., are studied with consideration of the effects of surface thermal conduction, thermal convection and heat radiation. With voltage applied to the electro-thermal actuator, the amount of displacement and the variation of the reaction force of the compliant bistable mechanism is studied.
A commercial finite element analysis software, ABAQUS 6.4, is used for the simulation. We simulate the stable thermal field of the electro-thermal actuator and the deformation of its structure, and the amount of displacement and the variation of the reaction force of the compliant bistable mechanism. A fabrication process of the compliant bistable mechanism and the electro-thermal actuator is proposed.


Keywords: MEMS , Compliant bistable mechanism , Electro-thermal actuator
URI: http://hdl.handle.net/11455/4139
其他識別: U0005-1608200716525000
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.