Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4177
標題: 染料敏化太陽能電池材料之製備與元件之探討
The Investigation of the Dye Sensitized Solar Cell Materials Preparation and Devices
作者: 王瑜婷
Wang, Yu-Ting
關鍵字: dye-sensitized solar cell;染料敏化太陽能電池;sol-gel method;porphyrin;solid state electrolyte;溶膠-凝膠法;紫質;固態電解質
出版社: 精密工程學系所
引用: [1] http://e-info.org.tw/node/28468,台灣環境資訊協會-環境資訊中心。 [2] http://blog.chinatimes.com/sow/archive/2006/05/09/58640.html [3] http://e-info.org.tw/node/30865,台灣環境資訊協會-環境資訊中心。 [4] http://blog.sina.com.tw/ffi8888/article.php?pbgid=49190&entryid=579721 [5] M. Grätzel, Nature 414 (2001) 338. [6] 莊嘉琛,太陽能工程-太陽能電池篇,全華,第一章、第二章、第四章,1997。 [7] M. Grätzel, Nature 403 (2000) 363. [8] 張正華、李陵嵐、葉楚平、楊平華編著,有機太陽能電池與塑料太陽能電池,化學工業出版社,2006。 [9] B. O’Regan, and M. Grätzel, Nature 353 (1991) 737. [10] J. Ferber, M. Hilgendorff, A. P. Yartsev, V. Sundstrom, J. phys. Chem. B 105 (2001) 4895. [11] 彭懷夫,中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用,國立東華大學化學研究所,碩士論文,2004。 [12] 劉茂煌,工業材料,奈米光電電池 203期 91-97。 [13] C. J. Barbe, F. Areddse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, J. Am. Cream. Soc. 80 (1997) 3157. [14] A. Kay, M. Grätzel, J. phys. Chem. 97 (1993) 6272. [15] T. Ma, K. Inoue, H. Noma, K. Yao, E. Abe, J. Photochem. Photobiol., A 152 (2002) 207. [16] S. Cherian and C. C. Wamser, J. Phys. Chem. B 104 (2000) 3624. [17] Y. Tachibana, S. A. Haque, I. P. Durrant D. R. Klug, J. phys. Chem. B 104 (2000) 1198. [18] 朱奕融,奈米TiO2 粒子應用於染料敏化太陽能電池之研究,南台科技大學電機工程研究所,碩士論文,2004。 [19] 史成武、戴松元、王孔嘉、潘 旭、郭 力,染料敏化奈米薄膜太陽能電池中電解質的研究進展,化學通報 2005年 第68卷。 [20] M. K. Nazeeruddin, A. Kay, I. Rodicio et al., J. Am. Chem. Soc. 115 (1993) 6382. [21] M. K. Nazeeruddin, P. Péchy, T. Renouard et al., J. Am. Chem. Soc. 123 (2001) 1613. [22] Y. Liu, A. Hagfeldt, X. Xiao et al., Solar Energy Materials and Solar Cells 55 (1998) 267. [23] S. Kambe, S. Nakade, T. Kitamura et al., J. Phys. Chem. B 106 (2002) 2967. [24] S. A. Haque, Y. Tachibana, R. L. Willis et al., J. Phys. Chem. B 104 (2000) 538. [25] H. Lindström, H. Rensmo, S. Södergren et al., J. Phys. Chem. 100 (1996) 3084. [26] S. Pelet, J. E. Moser, M. Grätzel., J. Phys. Chem. B 104 (2000) 1791. [27] K. Hara, T. Horiguchi, T. Kinoshita et al., Solar Energy Materials and Solar Cells 70 (2001) 151. [28] S. Y. Huang, G. Schlichthörl, A. J. Nozik et al., J. Phys. Chem. B 101 (1997) 2576. [29] S. Nakade, S. Kambe, T. Kitamura et al., J. Phys. Chem. B 105 (2001) 9150. [30] S. A. Sapp, C. M. Elliott, C. Contado et al., J. Am. Chem. Soc. 124 (2002) 11215. [31] H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin et al., J. Phys. Chem. B 105 (2001) 10461. [32] P. Wang, S. M. Zakeeruddin, P. Comte et al., J. Am. Chem. Soc. 125 (2003) 1166. [33] W. Kubo, S. Kambe, S. Nakade et al., J. Phys. Chem. B 107 (2003) 4374. [34] P. Terech, R. G. Weiss, Chem. Rev. 97 (1997) 3133. [35] W. Kubo, K. Murakoshi, T. Kitamura et al., J. Phys. Chem. B 105 (2001) 12809. [36] S. Murai, S. Mikoshiba, H. Sumino et al., Journal of Photochemistry and Photobiology A: Chemistry 148 (2002) 33. [37] T. Stergiopoulos, L. M. Arabatzis, G. Katsaros et al., Nano. Lett. 2 (2002) 1259. [38] F. Cao, G. Oskam, P. C. Searson. J. Phys. Chem. 99 (1995) 17071. [39] O. A. Ileperuma, M. A. K. L. Dissanayaka, S. Somasundaram, Electrochimica Acta 47 (2002) 2801. [40] A. F. Nogueira, M. A. D. Paoli., Solar Energy Materials and Solar Cells 61 (2000) 135. [41] U. Bach, D. Lupo, P. Comte et al., Nature 395 (1998) 583. [42] W. Huynh, J. J. Dittmer, A. P. Alivisators., Science 295 (2002) 2425. [43] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci et al., Synthetic Metals 125 (2002) 279. [44] K. R. Haridas, J. Ostrauskaite, M. Thelakkat et al., Synthetic Metals 121 (2001) 1573. [45] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci et al., Synthetic Metals 121 (2001) 1549. [46] Y. Saito, T. Kitamura, Y. Wada et al., Synthetic Metals 131 (2002) 185. [47] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci., Thin Solid Films 403-404 (2002) 271. [48] G. R. A. Kumara, S. Kaneko, M. Okuya et al., Langmuir 18 (2002) 10493. [49] B. O’Regan, D. Schwartz., Chem. Mater. 10 (1998) 1501. [50] G. R. A. Kumara, A. Konno, G. K. R. Senadeera et al., Solar Energy Materials and Solar Cells 69 (2001) 195. [51] Ma, T., Fang, X., Akiyama, M., Inoue K., Noma, H., Abe, E., Journal of Electroanalytical Chemistry and Photobiology A: Chemistry 574 (2004) 77. [52] 李威儀,GaNAs材料磊晶成長與AlAs濕氧化膜之研究,國立交通大學電子物理系,博士論文,2001。 [53] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie, Science 293 (2001) 1119. [54] H. Spanggaard*, F. C. Krebs, Solar Energy Materials & Solar Cells 83 (2004) 125. [55] H. H. Qin, J. H. Dong, K. Y. Qiu, Y. Wei, J. Appl. Polym. Sci. 78 (2000) 1763. [56] C. J. Brinker, G. W. Scherer, Sol-Gel-Science chap3. [57] B. E. Yoldas, J. Mater. Sci. 21 (1986) 1087. [58] K. P. Kumar, J. Kumar, and K. Keizer, J. Am. Ceram. Soc. 77 (1994) 1396. [59] K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, J. Mater. Sci. 29 (1994) 1617. [60] K. P. Kumar, J. Kumar, and K. Keizer, J. Am. Ceram. Soc. 77 (1994) 1396. [61] K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, Y. Iguchi, J. Mater. Sci. 29 (1994) 1617. [62] Manoj M. Haridas, Sundip Datta, Jayesh R. Bellare, Ceram. Int. 25 (1999) 601. [63] B. M. Novak and C. Davies, Polym. Prepr. 32 (1991) 512. [64] B. Y. Wu and A.S.T. Chiang, Chinese Journal of Materials Science 28 (1996) 169. [65] J. Ferber, M. Hilgendorff, A. P. Yartsev, V. Sundstrom, J. phys. Chem. B 105 (2001) 4895. [66] http://www.nchu.edu.tw/~rict/sem/SEM-prin.htm,中興大學研發處-貴重儀器中心-FE-SEM。 [67] http://audi.nchu.edu.tw/~tmwu/frameset.htm,中興大學材料系-吳宗明教授實驗室。 [68] http://www.ncku.edu.tw/~facility/facility/index.htm,成功大學-貴重儀器中心-ESCA。 [69] 朱奕融,奈米TiO2粒子應用於染料敏化太陽能電池之研究,南台科技大學電機工程研究所,碩士論文,2004。 [70] 連水養,量產型單晶太陽能電池製作,國立雲林科技大學電機工程系,碩士論文,2003。 [71] Ju. F. Huravlev, M. V. Kuznetsov, V. A. Gubanov, Journal of Electron Spectroscopy and Related Phenomena 38 (1992) 169. [72] A. Fernandez, A. R. Gonzalez-Elipe, D. Leinen, J. P. Espinos, J. P. Holgado, Applied Surface Science 68 (1993) 453. [73] D. Rats, J. Sevely, L. Vandenbulcke, R. Benoit, R. Erre, R. Herbin, V. Serin, Thin Solid Films 270 (1995) 177. [74] D. Borgmann, E. Hums, G. Hopfengartner, G. Wedler, G. W. Spitznagel, I. Rademacher, Journal of Electron Spectroscopy and Related Phenomena 63 (1993) 91. [75] A. Fahlman, C. Nordling, G. Johansson, K. Hamrin, J. Phys. Chem. Solids 30 (1969) 1835. [76] A. Luches, A. Perrone, B. Dubreuil, B. Rousseau, C. Boulmer-Leborgne, G. Blondiaux, H. Estrade, J. Hermann, J. L. Debrun, M. L. Degiorgi, M. Martino, P. Brault, Applied Surface Science 54 (1992) 349. [77] A. E. Miller, C. Ernsberger, D. Banks, J. Nickerson, T. Smith, J. Vac. Sci. Technol. A 4 (1986) 2784. [78] Ch. Cardinaud, G. Lemperiere, M. C. Peignon, P. Y. Jouan, Applied Surface Science 68 (1993) 595. [79] Kevin S. Robinson and Peter M. A. Shemood, Surface and Interface Analysis 6 (1984) 263. [80] A. Casagrande, A. Glisenti, E. Lanzoni, E. Tondello, L. Mirenghi, M. Casarin, R. Bertoncello, Surface and Interface Analysis 18 (1992) 525. [81] D. Briggs, M. P. Seah, John Willey & Sons. 1 (1993) second edition . [82] C. D. Wagner, J.F. Moulder, L. E. Davis, W. M. Riggs, Perking-Elmer Corporation, Physical Electronics Division (end of book). [83] P. J. Martin, R.P. Netterfield, T. S. Kinder and L. Descotes, Surf. Coat. Technol. 49 (1991) 239. [84] S. Sato, S. Shin, S. Suzuki, T. Ejima, T. Ishii, Y. Tezuka, Journal of the Physical Society of Japan 63 (1994) 347. [85] B. F. Lowenberg, B. W. Callen, J.E. Davies, R. N. S. Sodhi, S. Lugowski, Journal of Biomedical Materials Research 29 (1995) 279. [86] L. Zhang and R. V. Koka, Materials Chemistry and Physics 57 (1998) 23. [87] A. Luches, A. Perrone, B. Dubreuil, B. Rousseau, C. Boulmer-Leborgne, G. Blondiaux, H. Estrade, J. Hermann, J. L. Debrun, M. L. Degiorgi, M. Martino, P. Brault, Applied Surface Science 54 (1992) 349. [88] B. F. Dzhurinskii, D. Gati, N. P. Sergushin, V. I. Nefedov, Ya. V. Salyn, Russian Journal of Inorganic Chemistry 20 (1975) 2307. [89] 張正華、李陵嵐、葉楚平、楊平華編著,有機太陽能電池與塑料太陽能電池,化學工業出版社,2006。 [90] N.-G. Park, J. van de Lagemaat, and A. J. Frank, J. Phys. Chem. B 104 (2000) 8989. [91] Powder Diffraction File: Search Manual, Hanawalt Method Inorganic, complied by the JCPDS: Interational Cnetre for Diffraction Data; in cooperation with the American Ceramic Society, Swarthmore, Pennsylvania, (1991). [92] 楊茹媛、莊明戰、翁敏航、高宗達、戴寶通,奈米金粒子鑲埋之染敏太陽能電池之光電轉換效率,奈米通訊 14 (2007) 11. [93] A. Pochettino. Acad. Lincei Rend. 15 (1906) 355. [94] D. Kearns and M.J. Calvin. Chem. Phys. 29 (1958) 950.
摘要: 
本研究以兩大重點為主軸,第一是染料敏化太陽能電池(DSSC)之二氧化鈦(TiO2)薄膜特性分析,第二是染料敏化太陽能電池元件之I-V特性探討。研究以溶膠-凝膠(sol-gel)法製作TiO2,由於反應在室溫下即能進行,製得之材料純度高且均質性佳,塗佈後之薄膜呈現較高的光學透明性。探討TiO2薄膜特性,使用之分析儀器有:化學分析電子光譜儀(ESCA)、小角度X光繞射儀(SAXS)、掃描式電子顯微鏡(SEM)、紫外-可見光光譜分析儀(UV/Vis)。而製作的DSSC元件之I-V特性分析則使用電壓/電流源儀器與太陽光模擬器,透過電腦軟體連接來量測其電性曲線。
傳統液態電解質碘化物不僅電池不易密封,還存在著因有機溶劑易揮發和電解質易洩漏,而造成電池在長期工作過程中性能下降,縮短太陽能電池的使用壽命,因此本研究選擇以MEH-PPV取代液態電解質碘化物,作為DSSC元件固態電解質材料,解決因液態電解質引起的上述缺點。
染料是DSSC的光捕捉天線,亦是影響電池效率至關重要的一部分。目前效率最佳的釕錯合物染料(Ru-complex dye)含有稀有貴金屬,價格高昂,因此本研究採用自然、便宜的紫質衍生物-TCPP作為本研究之染料。
本研究最終目標是期望以sol-gel TiO2、便宜的紫質或葉綠素染料、固態電解質、及較鉑(Pt)便宜的金屬,製作出低成本、高效率之染料敏化太陽能電池。

This research has two major topics which are TiO2 thin film characteristic analyses and I-V characteristic of dye-sensitized solar cell devices. Sol-gel TiO2 solution, with high purity and homogenous, is reacted and proceed under room temperature. Its thin film shows the higher optics transparency by spin coating. To probe into the thin film characteristics of TiO2, analytic instruments are used as the following, ESCA, SAXS, SEM, UV/Vis spectrophotometer, and the I-V characteristics of devices is measured by the solar simulator system with Keithley source meter 2400 and incidence light source equipment. The I-V characteristic curve of solar cell is resulted by computer software.
The conventional liquid-electrolyte-dye-sensitized solar cell is difficult to seal, and also with both volatilization problem of organic solvent and leakage problem of electrolyte, which cause battery performance drop in the course of long-term work, and shorten the life time of dye-sensitized solar cell. Therefore, this research uses MEH-PPV, as the solid state electrolyte material for dye-sensitized solar cell, to replace liquid electrolyte iodide and also solve the above-mentioned disadvantages caused by liquid electrolyte.
Dye not only catches the light for dye-sensitized solar cell but also influence efficiency mainly. At present, the Ru-complex dye, containing the noble metal, is the most efficient in dye-sensitized solar cell application, but very expensive. In this research, TCPP is used for dye-sensitized solar cell because of both nature and cheap behavior.
The final goal in this research expects to manufacture low cost, high efficiency dye-sensitized solar cell with cheap sol-gel TiO2, porphyrin or chlorophyll dye, solid state electrolyte and metal of counter electrode.
URI: http://hdl.handle.net/11455/4177
其他識別: U0005-1108200811312000
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.