Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4181
DC FieldValueLanguage
dc.contributor李佳言zh_TW
dc.contributor王可文zh_TW
dc.contributor.advisor王東安zh_TW
dc.contributor.author范輝遵zh_TW
dc.contributor.authorPham, Huy-Tuanen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T06:27:12Z-
dc.date.available2014-06-06T06:27:12Z-
dc.identifierU0005-1707200811325000zh_TW
dc.identifier.citationREFERENCES Akiyama, T., Fujita, H., “A Quantitative Analysis of Scratch Drive Actu¬ator Using Buckling Motion,” Proceedings of the 1995 IEEE Micro Elec¬tro Mechanical Systems Conference, pp. 310-315, 1995. Alper, S.E., Silay, K.M., Akin, T., “A Low-Cost Rate-Grade Nickel Microgyroscope,” Sensors and Actuators A, Vol. 132, pp. 171-181, 2006. Barillaro, G., Molfese, A., Nanini, A., and Pieri, F., “Analysis, Simulation and Relative Performances of Two Kinds of Serpentine Springs,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 736-746, 2005. Brown, E.R., “RF-MEMS Switches for Reconfigurable Integrated Circuits,” IEEE Transactions On Microwave Theory And Techniques, Vol. 46, No. 11, pp. 1868-1880, 1998. Butler, J.T., Bright, V.M., Cowan, W.D., “Average Power Control and Positioning of Polysilicon Thermal Actuators,” Sensors and Actuators A, Vol. 72, No. 1, pp. 88-97, 1999. Capanu, M., Boyd, J.G., Hesketh, P., “Design, Fabrication, and Testing of a Bistable Electromagnetically Actuated Microvalve,” Journal of Microelectromechanical Systems, Vol. 9, No. 2, pp. 181-189, 2000. Casals-Terre, J., Shkel, A., “Dynamic Analysis Of A Snap-Action Micromechanism,” Proceedings of IEEE on Sensors’04, Wien, pp. 1245-1248, 2004. Casals-Terre, J., Shkel, A., “Snap-Action Bistable Micromechanism Actuated By Nonlinear Resonance,” Proceedings of IEEE on Sensors’05, pp. 893-896, 2005. D’Souza, A.F., Garg, V.K, Advanced Dynamics: Modeling and Analysis, Prentice-Hall, New Jersey, 1984. Franssila, S., Introduction to Microfabrication, Wiley, 2004. Freudenreich, M., Mescheder, U.M., Somogyi, G., “Design Considerations and Realization of a Novel Micromechanical Bistable Switch,” Proceedings of the 12th International Conference on Solid State Sensors, Actuators and Microsystems, Tranducers’03, pp. 1096-1099, 2003. Gomm, T., Howell, L.L, “In-plane Linear Displacement Bistable Microrelay,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 257-264, 2002. Halg, B., “On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics,” Proceedings IEEE Workshop on MEMS, pp. 172-176, 1990. Jensen, B.D., Howell, L.L., Salmon, L.G., “Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms,” Journal of Mechanical Design, Vol. 121, pp. 416-423, 1999 Jensen, B.D., “Identification of Macro- and Micro- Compliant Mechanism Configurations Resulting in Bistable Behavior,” M.S. Thesis, Brigham Young University, Provo, Utah, 1998. Jessen, B.D., Boer, M.P., Masters, N.D., Bitsie, F., Van, D.A., “Interferometry of Actuated Microcantilevers to Determine Material Properties and Test Structure Non- idealities in MEMS,” Journal of Microelectromechanical Systems, Vol. 10, No. 3, pp. 336-346, 2001. Koester, D., Cowen, A., Mahadevan, R., Stonefield, M., Hardy, B., PolyMUMPs Design Handbook, Rev 10.0, MEMSCAP, 2003. Kwon, H.N., Hwang, I.H., Lee, J.H., “A Pulse-operating Electrostatic Microactuator for Bi-stable Latching,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1511-1516, 2005. Lee, K.B., Pisano, A.P., Lin, L., “Nonlinear Behaviors of a Comb Drive Actuator Under Electrically Induced Tensile and Compressive Stresses,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 557-566, 2007. Lott, C.D., McLain, T.W., Harb, J.N., Howell, L.L., “Modeling the Thermal Behavior of a Surface-micromachined Linear-displacement Thermomechanical Microactuator,” Sensors and Actuators A, Vol. 101, pp. 239-250, 2002. Luharuka, R., Hesketh, P., “A Bistable Electromagnetically Actuated Rotary Gate Microvalve,” Journal of Micromechanics and Microengineering, Vol. 18, pp. 1-14, 2008. Madou, M.J., Fundamentals of Microfabrication, CRC Press, 2002. Park, J.S., Chu, L.L., Siwapornsathain, E., Oliver, A.D., and Gianchandani, Y.B., “Long Throw and Rotary Output Electro-Thermal Actuators Based on Bent-Beam Suspensions,” The 13th Annual International Conference on MEMS, pp. 680-685, 2000. Parkinson, M.B., Jensen, B.D., Roach, G.M., “Optimization-Based Design of a Fully-Compliant Bistable Micromechanism,” Proceeding of DETC’00 ASME Design Engineering Technical Conferences, pp. 1-7, 2000. Qiu, J., Lang, J.H., Slocum, A.H., “A Curved-Beam Bistable Mechanism,” Journal of Microelectromechanical Systems, Vol. 13, No.2, pp. 137-146, 2004. Qiu, J., Lang, J.H., Slocum, A.H., Weber, A.C., “A Bulk-Micromachined Bistable Relay With U-Shaped Thermal Actuators,” Journal of Microelectromechanical Systems, Vol. 14, No.5, pp. 1099-1109, 2005. Riethmuller, W., Benecke, W., “Thermally Excited Silicon Microactuators,” IEEE Transactions on Electrical Devices, Vol. 35, No. 6, pp. 758-763, 1988. Saif, M.T.A., “On a Tunable Bistable MEMS - Theory and Experiment,” Journal of Microelectromechanical Systems, Vol. 9, No.2, pp. 157-170, 2000. Saitou, K., Wang, D.A., Wou, S.J., “Externally Resonated Linear Microvibromotor for Microassembly,” Journal of Microelectromechanical Systems, Vol. 9, No.3, pp. 336-346, 2000. Senturia, S.D., Microsystem Design, Kluwer academic, 2001. "SUMMiT V Five Level Surface Micromachining Technology Design Manual,” Version 1.3, MEMS Devices and Reliability Physiscs Department, Microelectronics Develop- ment Laboratory, Sandia National Lab¬oratories. Taylor, W.P., Brand, O., Allen, M.G., “Fully Integrated Magnetically Actuated Micromachined Relays,” Journal of Microelectromechanical Systems, Vol. 7, No.2, pp. 181-191, 1998. Tsay, J., Su, L.Q., Sung, C.K., “Design of a Linear Micro-Feeding System Featuring Bistable Mechanisms,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 63-70, 2005. Vangbo, M., “An Analytical Analysis of a Compressed Bistable Buckled Beam,” Sensors and Actuators A, Vol. 69, pp. 212-216, 1998. Wagner, B., Quenzer, H.J., Hoerschelmann, S., Lisec, T., Juerss, M., “Bistable Micro- valve with Pneumatically Coupled Membranes,” The 9th Annual International Workshop on Micro Electro Mechanical System MEMS’96, pp. 384-388, 1996. Yang, Y.J., Liao, B.T., Kuo, W.C., “A Novel 2 × 2 MEMS Optical Switch Using the Split Cross-bar Design,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 875-882, 2007. 馮智誠, “Fabrication of Comb Drive Microstructures by UV-LIGA Process,” M.S. Thesis, National Chung Hsing University, Taichung, Taiwan, 2007.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4181-
dc.description.abstractA novel method to switch an on-substrate bistable micromechanism is proposed. An external vibration is exploited to switch the micromechanism between its bistable positions. There is no need to build any actuators on substrate with this method. The vibration-actuated bistable micromechanism (VABM) is vibrated by shaking the entire substrate with a piezo actuator. The vibration provides a simple means of switching the VABM. Finite element analyses are utilized to obtain the nonlinear spring stiffness of the VABM and an analytical model is derived in order to analyze its dynamic behavior. Prototypes of the VABM are fabricated using electroforming. A scenario of the VABM for on-substrate fine positioning of micro components is presented.en_US
dc.description.tableofcontentsTABLE OF CONTENTS ABSTRACT i ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES vii CHAPTER 1 INTRODUCTION 1 1.1 Introduction 1 1.1.1 Purpose of the thesis 1 1.1.2 Contributions 2 1.2 Literature Review 2 1.2.1 Compliant Mechanism 2 1.2.2 MicroElectroMechanical Systems (MEMS) 3 1.2.3 Bistable Micromechanism 5 1.2.4 Microactuators 7 1.2.5 Dynamic actuation 12 1.3 Thesis outline 13 CHAPTER 2 DESIGN AND ANALYSIS 19 2.1 Operational principle 19 2.2 Modeling 20 2.2.1 Choosing configurations for BMs 20 2.2.2 Parameter optimization 23 2.3 Analysis 24 2.3.1 FEM Analysis 24 2.3.2 Numerical analysis 34 CHAPTER 3 FABRICATION 40 3.1 Sputter 40 3.2 Electroforming 40 3.2.1 Photolithography 40 3.2.2 Electroplating 42 3.3 Results 44 CHAPTER 4 MEASUREMENT AND TESTING 53 4.1 Measurement 53 4.1.1 Force gauge 53 4.1.2 Natural frequency 54 4.1.3 Piezo actuator characteristic curves 54 4.2 Testing 55 4.2.1 Manual manipulation 55 4.2.2 Dynamic actuation 55 4.3 Discussions 56 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 67 5.1 Conclusions 67 5.2 Future work 67 References 69en_US
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1707200811325000en_US
dc.subjectbistableen_US
dc.subject雙穩態機構zh_TW
dc.subjectmicromechanismen_US
dc.subjectvibrationen_US
dc.subject微機構zh_TW
dc.subject振動zh_TW
dc.title應用於微組裝之振動致動之雙穩態機構zh_TW
dc.titleA VIBRATION-ACTUATED BISTABLE MICROMECHANISM FOR MICROASSEMBLYen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:精密工程研究所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.