Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorPin Hanen_US
dc.contributorChi-Chung Liuen_US
dc.contributor.advisorRay-Hua Horngen_US
dc.contributor.authorChen, Chen-Ien_US
dc.identifier.citation[1] L. T. Young, J. J. Gerbrands, and L. J. V. Vliet, “Fundamentals of Image Processing,” Delft University of Technology, 2nd ed, pp.33-35, 1998. [2] Y. Guangbin, “Life Cycle Reliability Engineering,” Wiley, 1st ed, pp.237-256, 2007. [3] B. R. Archambeault, “PCB Design for Real-World EMI control,” IBM Technologies Inc., 1st ed, pp.7-9, 2003. [4] D. Clein, “CMOS IC Layout,” Newnes, 1st ed, p.83-87, 1999. [5] W. K. Pratt, “Digital Image Processing,” Wiley, 4th ed, pp.127-133, 2007. [6] J. P. Colinge and C. A. Colinge, “Physics of Semiconductor Devices,” Springer, 1st ed, pp.29-30, 2005. [7] Serway and Jewett, “Physics for Scientists and Engineers,” Thomson Books, 6th ed, pp.605-630, 2004. [8] L. M. Jiji, “Heat Convection,” Springer, 1st ed, pp.299-301, 2006. [9] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing Corporation, 1st ed, pp.113-137, 1980. [10] A. Bar-Cohen, Proceedings of the IEEE, Vol.73, pp.1388-1395, 1985. [11] E. Yu and Y. K. Joshi, IEEE Transactions on Components and Packaging Technologies, Vol.23, pp.14-22, 2000. [12] R. S. Lee, H. C. Huang, and W. Y. Chen, 6th IEEE SEMI-THERM Symposium, pp.95-102, 1990. [13] R. W. Knight, J. S. Goodling, and B. E. Gross, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol.15, pp.754-760, 1992. [14] C. D. Mandrone, K. Azar, and J. M. Segelken, 9th IEEE SEMI -THERM Symposium, pp.19-27, 1993. [15] I. Sauciuc, M. Mochizuki, K. Mashiko, Y. Saito, and T. Nguyen, 16th IEEE SEMI-THERM Symposium, pp.27-32, 2000. [16] D. G. Wang, IEEE/CMPT Electronics Packaging Technology Conference, pp.133-137, 1998. [17] T. Y. T. Lee, J. A. Andrews, P. Chow, and D. Saums, Components, Hybrids, and Manufacturing Technology, Vol.15, pp.786-793, 1992. [18] T. D. Hund, 40th ECTC Processing, Vol.1, pp.436-441, 1990. [19] S. Speaks, “Reliability and MTBF Overview,” Vicor Reliability Engineering, pp.5-7, 2000. [20] JEDEC Solid State Technology Association, “Guidelines for Reporting and using Electronic Package Thermal Information,“ JESD51-12, pp.8-17, 2005.zh_TW
dc.description.abstract綜觀市面上眾家應用於影像感測、擷取之影像模組,皆已逐漸朝向體積變小、效能更為提升的研究方向發展。如何在有效的使用空間下,達到符合產品需求的最佳化設計值,將是未來產品開發的趨勢。在現階段影像模組的開發過程中,電子設計工程師往往只考慮信號傳輸的正確性及效能上的補償功能,因此在電路板的排版過程中,加入了越來越多的穩壓電路、控制晶體及走線。但在遷就了電路控制上的考量後,幾乎已將一塊像火柴盒尺寸般的印刷電路板上塞滿了零件,而此舉卻忽視了眾多零件耗能所帶來的“熱”影響。 本論文利用紅外線熱影像分析影像模組的電路板之溫度分佈,藉由零件溫度的高低歸納出主要的熱源所在,再依此分成兩大項研究。首先針對溫度高的位置設置排除熱能的散熱機構,並探討散熱器對電路板散熱上的實質效益。其次是評估電路板設計上的零件位置及佈線方式,以尋求最符合電路設計之最佳化走線佈局。為了確保電路板上的影像感測器、數位訊號處理器能工作於適當的溫度範圍,本論文藉由整合熱傳分析所預設的模擬以及實際量測數據之交互驗證下,提出針對主要熱源之處可改善10 %的散熱效能之方法。zh_TW
dc.description.abstractMost commercial image modules for image sensing and capturing are developed to be small in size and have more functionalities. How to achieve the optimum design under the limited usable space is the future trend in product development. In the current development process of the image module, since an electrical engineer usually only considers the correctness of signal transmission and the compensating functionalities, more regulated-circuits, signal-controller ICs, and signal-routes are added during processing the layout of a printed circuit board (PCB). After compromising to the circuit control rules, the PCB with size like a match-box has been jammed with various electronic components. However, the heat caused by these components is totally ignored. This thesis utilizes the Infrared-Thermograph to analysis actual temperature distribution of the PCB, generalizes the main heat source from the temperatures of the components, and then divides into two research categories. First, the heat dissipation mechanisms are provided on the high temperature position of the PCB. Then, its actual heat dissipation effect is studied. Second, the position and the layout of the components are evaluated to find out the optimum layout of the PCB that fulfills the requirements of the circuit design rules. In order to guarantee the operating temperatures of the image-sensor and the DSP on the PCB to be within a suitable range, this thesis provides an improved method by alternately verifying the simulated data from the heat-transfer analysis and the actual measured data that improve 10 % heat dissipation effect of the main heat source.en_US
dc.description.tableofcontents封面 空白頁 書名頁 審核頁 授權頁 誌謝 i 中文摘要 ii 英文摘要 iii 目錄 iv 表目錄 vi 圖目錄 vii 符號表 ix 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與方法 5 1-4 論文架構 6 第二章 基本原理 7 2-1 影像模組動作原理 7 2-1-1 影像感測器 8 2-1-2 數位訊號處理器 10 2-2 產品可靠度 11 2-3 熱電流現象 13 2-4 熱傳原理 14 2-4-1 熱力學第一定律 14 2-4-2 熱傳導 14 2-4-3 熱對流 15 2-4-4 熱輻射 16 2-4-5 熱阻 16 2-5 數值分析原理 17 2-5-1 數值分析理論 17 2-5-2 數值演算方法 18 2-6 紅外線相關原理 20 第三章 實驗方法及設備 22 3-1 實驗設備 22 3-2 實驗方法 23 3-3 實驗步驟 24 3-4 實驗結果 25 第四章 數值方法分析 26 4-1 模擬分析 26 4-2 參數設定 28 第五章 散熱設計改良 29 5-1 預設模擬與實測數值結果比較 29 5-2 散熱機構與溫度變化之相對關係 30 5-3 零件佈置對溫度分佈之影響 31 第六章 結論與未來展望 32 6-1 結論 32 6-2 未來展望 34 參考文獻 35zh_TW
dc.subjectHeat dissipationen_US
dc.subjectImage sensoren_US
dc.titleThermo-Dynamic Diagnostics and Heat Dissipation Strategy for Image Modulesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:精密工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.