Please use this identifier to cite or link to this item:
標題: 磷化銦鎵/砷化鎵串接式太陽能電池之研究
Investigation of GaInP/GaAs tandem solar cell
作者: 黃俊凱
Huang, Jun-Kai
關鍵字: GaAs;砷化鎵;tandem solar cell;MOCVD;串接式太陽能電池;有機金屬化學氣相磊晶系統
出版社: 精密工程學系所
引用: [1] 蔡雨利、洪瑞華、吳志宏、趙志剛, 光學工程, 中華民國光學工程學會出版, vol. 100, 1-7, 2007. [2] D.A. Janny, J.J. Loferski, and P. Rappaport, Physical Review, vol. 101, 1208, 1956. [3] 莊家琛, “太陽能工程-太陽電池篇”, 全華出版社, 台灣, 1997. [4] M. Yamaguchi, T. Takamotob and K. Araki, Solar Energy Materials and Solar Cells, vol. 90, 3068–3077, 2006. [5] M. Yamaguchi, Solar Energy Materials and Solar Cells, vol. 75, 261–269, 2003. [6] T. Takamoto, M. Yumaguchi, E. Ikeda, T. Agui, H. Kurita, and M. Al-Jassim, Journal of Applied Physics, vol. 85, 1481-1486, 1999. [7] N. Kojima, M. Okamoto, S. J. Taylor, M. J. Yang, T. Takamoto, M. Yamaguchi, K. Takahashi, and T. Unno, Solar Energy Materials and Solar Cells, vol. 50, 237–242, 1998. [8] S. Gotoh, T. Ueda, H. Kakinuma, and M. Akiyama, Solar Energy Materials and Solar Cells, vol. 50, 281–288, 1998. [9] H. Sugiura, C. Amano, A. Yamamoto, and M. Yamaguchi, Japanese Journal of Applied Physics, vol. 27, 269-272, 1988. [10] M. A. Green, K. Emery, Y. Hisikawa, and W. Warta, Progress in photovoltaics: research and applications, vol. 15, 425–430, 2007. [11] Brenton Burnett, “The Basic Physics and Design of III-V Multijunction Solar Cells”, 2002. [12] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, Applied Physics Letters, vol. 75, 729-731, 1999. [13] F. Dimroth, C. Baur, A. W. Bett, K. Volz, and W. Stolz, Journal of Crystal Growth, vol. 272, 726-731, 2004. [14] M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, IEEE Electron Device Letters, vol. 27, 142-144, 2006. [15] C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, IEEE Transactions On Electron Devices, vol. 52, 1055-1060, 2005. [16] M.P. Thekackara, “The Solar Constant and the Solar Spectrum Measurement from a Research Aircraft”, NASA Technical Report No. R-351, 1970. [17] D. A. Neamen, “Semiconductor Physics and Devices”, the McGraw Hill Companies. [18] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process”, IEEE, vol. Ed 31. [19] 林明獻, “太陽電池-技術入門”, 全華出版社, 台灣, 2008. [20] 吳財福, 張健軒, 陳裕愷, “太陽能供電與照明系統綜論”, 全華出版社, 台灣, 2007. [21] 施敏 原著, 黃調元 譯著, “半導體元件物理與製程技術”,第二版, 高立圖書有限公司, 台灣, 2002. [22] D. K. Schroder, “Semiconductor material and device characterization”, 190-195, 1990. [23]陳立俊, 材料電子顯微鏡學, 國家實驗研究院儀器科技研究中心, 台灣, 1990. [24]汪建民, “材料分析”, 中國材料科學學會, 台灣, 1998.
本篇論文主要為磷化銦鎵(GaInP) / 砷化鎵(GaAs)串接式太陽能電池之開發研製,藉由研究找出製作多接面串接式太陽能電池關鍵技術,從基本的磊晶及製程開始做起,各項基本磊晶參數之建立,包括磷化銦鋁(AlInP)、GaInP、磷化銦鎵鋁(AlxGa1-xInP)及GaAs薄膜成份及摻雜濃度對流量關係,後段製程技術包括上下電極之蒸鍍、合金退火條件的調整、接觸層的局部蝕刻以及抗反射膜參數建立,致使太陽能電池效率有顯著改善。
針對GaAs太陽能電池結構設計,主要為探討射極層及窗口層厚度對元件表現之影響。結果顯示,在射極層的厚度調整部份,成長射極層厚度為200 nm之太陽能電池,具有較高的短路電流,至於窗口層的厚度及材料選擇也會影響太陽能電池的光電轉換效率,其中固定GaInP為窗層材料,改變窗層的厚度,太陽能電池的光電轉換效率於窗層厚度為50nm時達到最大值。
在GaInP / GaAs串接式太陽能電池研究中,頂部GaInP太陽能電池之光電轉換效率為6.34 %,底部GaAs太陽能電池所做出的效率為12.67 %,在串接的部份,以GaAs:C搭配GaAs:Si之穿隧二極體組合,其峰值電流與谷底電流電流比Ip / Iv是10 : 1, GaInP/GaAs串接式太陽能電池之效率為4.22 %,效率沒有提升之原因在於頂部與底部子太陽能電池之短路電流尚未匹配及穿隧接面退化所造成。

The major topic of this thesis is the investigation of GaInP/GaAs tandem solar cells. To improve the efficiency of solar cells, this research investigates the critical techniques of multi junction tandem solar cell, based on the epitaxy techniques and post-growth fabrication processes. The basic epitaxy parameters which include the material composition and dopant concentration versus precursor flow rate of AlInP, GaInP, AlXGa1-XInP and GaAs. In post-growth fabrication processes, this thesis also discusses about the process of top and bottom metal electrodes evaporation, the conditions of alloy process, the selectivity-etching of contact layer, and the parameters of anti-reflection coating evaporation.
In accordance with GaAs solar cell structure, the influence of emitter and window layers thickness is discussed. Based on the experimental results, the emitter layer is 200 nm thick, and the solar cell would result in higher ISC. On the side of window layer, GaInP is selected as this layer material, the optimum efficiency can be obtained by tuning this layer thickness up to 50 nm.
In the research of GaInP/GaAs tandem solar cell, the GaInP top cell efficiency is 6.34%, and the GaAs bottom cell efficiency is 12.67%. For the GaAs:C/GaAs:Si tunnel diode selected, both sides are doped heavily, the ratio of peak current and valley current, IP:IV, is 10:1. Finally, the GaInP/GaAs tandem solar cell efficiency is 4.22 %. The reason that the efficiency decreased is the short current Isc limited by current-match and the degradation of tunnel junction.
其他識別: U0005-2408200820523600
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.