Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4200
標題: 利用光學干涉術之透鏡偏心誤差量測
Centering Error Measurement of Lenses Using the Optical Interferomtry
作者: 李賢奎
Lee, Shian-Kuei
關鍵字: centering error;偏心誤差;interferometer;phase shifting technology;干涉儀;相移技術
出版社: 精密工程學系所
引用: [1] “光學元件精密製造與檢測”, 國家實驗研究院儀器科技研究中心, 民國98年 [2] Bouwhuis G., Braat J. M.,”Interferometric device for detecting a centering error,” United State patent No. 5253038,(1993) [3] 陳裕欣,“精密光學元件(鏡頭)技術之理論與實務”, 國立中正大學物理學系研究所碩士論文,民國91年 [4] 李建興,吳文弘,黃國政,陳峰志,“偏心量測技術與發展”, 國家實驗研究院儀器科技研究中心, 民國95年 [5] “光機電系統整合概論”, 國家實驗研究院儀器科技研究中心, 民國94年 [6] “Opticentric-Motorized-Instruction Manual,” Trioptics GmbH,Germany(2003) [7] 王文生, “干涉測試技術”, 兵器工業出版社(1992) [8] 陳錦堂,“對心機的光學建模與分析”, 國立成功大學機械工程學系研究所碩士論文, 民國94年 [9] 吳震, “光干涉測量技術”, 中國計量出版社(1995) [10] Cheng Y.Y., Wyant J. C.,“Phase shifter calibration in phase-shifting interferometry,” Applied optics, Vol. 24, No. 18,(1985) [11] 蘇大圖,“光學測試技術” , 北京理工大學出版社(1996) [12] Hecht E., “Optics”, Addison Wesley(2002),four edition [13] Lin Y., Dong G., Huang Y., Niu Y.,“ Research on measurement of lens centering errors based on image processing,” Proc. of SPIE Vol. 6834, 68341H, (2007) [14] Heinisch J., Dumitrescu E., Krey S.,“ Novel technique for measurement of centration errors of complex, completely mounted multi-element objective lenses,” Proc. of SPIE Vol. 6288 628810-7 , (2006) [15] Guyenot V., Siebenhaar C.,“Centering of optical components by using stick - slip effect,” Proc. of SPIE Vol. 3739 (1999) [16] 范光照,張郭益,“視精密量測”,高立圖書, 民國87年 [17] 黃文孝,“菲佐顯微干涉儀研製與應用”, 中原大學機械工程學系研究所碩士論文, 民國92年 [18] 潘安勝,“相位移干涉系統之平坦度量測”, 國立台灣科技大學機械工程學系研究所碩士論文, 民國93年
摘要: 
光學元件之精密檢測技術的提升,對科技發展十分深遠。而偏心誤差的量測在光學元件製造與檢驗扮演相當重要之一環。一般而言,傳統的偏心測量方式,主要有機械式及光學式兩種型態。機械式的測量是利用指示器配合治具對待測透鏡之外緣或表面進行接觸式測量;而光學式的測量原理則是利用幾何光學的折射或反射性質,對待測元件進行非接觸式的偏心誤差量測。
本研究係利用光的干涉性質,並使用干涉儀為其量測裝置。此外,為了提昇量測精度,並應用相移技術在量測實驗上,係以分光鏡將光源分為兩道光程,一道為參考光,另一道為待測光。在待測光程中加入透鏡治具、待測透鏡與輔助透鏡,當待測透鏡貼靠於透鏡治具,此時擷取五張連續相移干涉圖,之後由待測透鏡配合透鏡治具沿待測透鏡外緣旋轉180度,再擷取另一組干涉圖形,最後由兩組干涉圖進行分析,以測量光學元件的偏心誤差值。針對第一片待測透鏡量測,測得其偏心量之平均值5.4秒,標準差為2.1秒;對於第二片待測透鏡,測得其偏心量為48.3秒,標準差為6.5秒。實驗結果證實此量測架構的可行性,但待測透鏡的旋轉的機制仍有待改善。

Precision inspection of optical components has much influence on the development of technology. Centering error plays an important role in the area of the optical testing and fabricating. In general, there are two mainly conventional types of centering error measurement. One is the mechanical measurement and the other is the optical measurement. The mechanical measurement is to use an indicator to measure the surface or the edge of the testing lens mounted in a specific holder in a contact way. The principle of the optical measurement is the geometric optics, utilizing the properties of refraction or reflection of light to detect the centering error of the testing elements in a contactless way.
In this study, we utilized the properties of interference of light and used the interferometer as our measurement apparatus. Furthermore, in order to advance the precision quality, we adopted the phase shifting technology in our experiment. The beam splitter divided the light source into two paths, the reference ray and the testing ray. We placed the lens holder, testing lens, and the assistant lens in the testing optical path. When the testing lens was mounted in the lens holder, we took five dynamic interferograms. After rotating the testing lens by 180 degrees along the edge of the testing lens, we took another set of interferograms. Then, we could evaluate the centering error of the testing optical element by analysing these two sets of interferograms. Centering error measurement for the first testing lens returned a mean value of 5.4 sec with a standard deviation of 2.1 sec. For the second testing lens, a mean value of 48.3 sec was measured with a standard deviation of 6.5 sec. The experimental result verifies the feasibility of this measuring framework, but the rotating mechanism of the testing lenses remains to be improved.
URI: http://hdl.handle.net/11455/4200
其他識別: U0005-2508200815501000
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.