Please use this identifier to cite or link to this item:
標題: 薄型化碳纖維紙製程開發應用於燃料電池之研究
Research of thin carbon fiber paper manufacturing process for fuel cell applications
作者: 陳晉華
Hua, Chen-Ching
關鍵字: gas diffusion layer;氣體擴散層;attenuate thickness;fuel sell;PAN carbon-fiber;impregnation method;薄型化;燃料電池;PAN 系碳纖維;含浸法
出版社: 精密工程學系所
引用: [1] Chang F., “Current Status for the Industrial Technology Research and Development Collaboration Program in Taiwan, R.O.C.,” Specialist of Deparment of Industrial Technology, Ministry of Economic Affairs, Vol. 9, No. 2, pp. 1-40. 2003. [2] Rieu M. and Sposite G., “Fractal fragmentation: soil porosity and soil water properties: I Theory.,” Soil science Society of America Journal, Vol. 55, pp. 1231-1238, 1991. [3] Perfect E., et al., “An improved fractal equation for the soil water retention curve,” Water Resour. Res., Vol. 32, No. 2, pp. 281-288, 1996. [4] Bernardi D. M. and Verbrugge M. W., “Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte,” AICHE Journal, Vol. 37, pp. 1151-1163, 1991. [5] Jordan L. R., et al., “Diffusion layer parameter influencing optimal fuel cell performance,” Journal Electrochemical Source, Vol. 86, Issue 1-2, pp. 250-254, 2000. [6] Kazim A., et al., “Modeling of performance of PEM fuel cells with conventional and interdigitated flow field,” Journal of Apply Electrochemistry, Vol. 29, pp. 1409-1416, 1999. [7] Gurau V., et al., “Two-dimensional model for proton exchange membrane fuel cells,” AICHE Journal, Vol. 44, No. 11, pp. 2410-2422, 1998. [8] Gurau V., et al., “An analytical solution of a half-cell model for PEM fuel cells,” Journal Electrochemical Source, Vol. 147,. Pp. 2468-2477, 2000. [9] Kong C. S., et al., “Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells,” Journal Power Sources, Vol. 108, pp. 185-191, 2002. [10] Cheng X., et al., “Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells,” Journal Power Sources, Vol. 79, pp. 75-81, 1999. [11] Jordan L. R., et al., “Effect of diffusion-layer morphology on the performance of polymer electrolyte fuel cells operating at atmospheric pressure,” Journal Applied Electrochemical, Vol. 30, No. 6, pp. 641-646, 2000. [12] Jordan L. R., et al., “Diffusion layer parameters influencing optimal fuel cell performance,” Journal Power Source, Vol. 86, No. 1-2, pp. 250-254, 2000. [13] Chen J., et al., “Two-layer structure of gas diffusion layer in PEMFC and the two-phase transport,” China Academic Journal Electronic Publishing House, Vol. 37, No. 2, pp. 155-157, 2007. [14] Qi Z. G. and Kaufman A., “Improvement of water management by a microporous sublayer for PEM fuel cells,” Journal Power Sources, Vol. 109, No. 1, pp. 38-46, 2002. [15] Yu J. R., et al., “Preparing gas diffusion layer of PEM fuel cells with dry deposition technique,” Electrochemical and Solid-State Letters, Vol. 8,No. 3, pp. 152-155, 2005. [16] Nam J. H. and Kaviany M., “Effective diffusivity and water-saturation distributional in single- and two-layer PEMFC diffusion medium,” International Journal of Heat and Mass Transfer, Vol. 46, No. 24, pp.1595-4611, 2003. [17] Williams M. V., et al., “Characterization of gas diffusion layer for PEMFC,” Journal Electrochemical Source, Vol. 151, No. 8, pp. 173-180, 2004. [18] Wang X. L., et al., “Micro-porous layer with composite carbon black for PEM fuel cell,” Electrochemical Acta, Vol. 51, No. 23, pp. 4909-4915, 2006. [19] West A. C. and Fuller T. F., “Influence of rib spacing in proton-exchange membrane electrode assemblies,” Journal of Applied Electrochemistry, Vol. 26, pp. 557-565, 1996. [20] Yan W. M., et al., “Effects of fabrication processes and material parameters of GDL on cell performance of PEM fuel cell,” International Journal of Hydrogen Energy, Vol. 32, Issue 17, pp. 4452-4458, 2007. [21] Prasanna M., et al., “Influence of cathode gas diffusion media on the performance of the PEMFCs,” Journal Power Sources, Vol. 131, pp. 147-154, 2004. [22] Huang N., et al., “Preliminary study on high-performance carbon fiber paper for PEMEC,” Chinese Journal of Power Sources, Vol. 27, No. 6, pp. 37-40, 2002. [23] Zhou Z., et al., “Development of Carbon Fiber Paper for Fuel Cell,” Chinese Journal of Power Sources, Vol. 21, No. 7, pp. 108-110, 2007. [24] Tang H., et al., “Review on gas-diffusion-layer matericals for PEM fuel cell,”Chinese Journal of Power Sources, Vol. 9, No. 5, pp. 253-257, 2004. [25] Yan W., et al., “Effects of fabrication processes and material parameters of GDL on cell performance of PEM fuel cell,” International Journal of Hydrogen Energy, Vol. 32, pp. 4452-4458, 2007. [26] Park G., et al., “Adoption of nano-materials for the micro-layer in gas diffusion layers of PEMFCs,” Journal of Power Sources, Vol. 163, pp. 113-118, 2006. [27] Qi Z., et al., “Effecting factors of carbon fiber to PAN precursor fiber,” Hi-Tech Fiber and Application, Vol 26, No. 5, pp 17-20, 2001.
本論文主要在利用新製程作出薄型化的氣體擴散層,使用碳能科技公司提供的百分之百PAN (Polyacrylonitrile) 系纖維作為原料的多孔性氧纖氈,氣體穿透度為5.7 cm3/cm2.s,孔隙率為78.4%。利用含浸酚醛乙醇溶劑且加入0.5 wt%之奈米碳管,使碳紙在與纖維同方向的機械強度可達到33.99 kPa,而與纖維方向垂直的部分可達到15.18 kPa;穿透電阻由64.9 mΩ/cm2下降至46.5 mΩ/cm2;碳紙薄型化的製程部分能將厚度達到小於0.2 mm。最後再將氣體擴散層塗上微孔層(Micro porous layer, MPL) ,並測量出當碳紙添加了0.5 wt%的奈米碳管時,其電池效率比未加入碳管提升了74.9%。

The purpose of this study is to fabricate thin gas diffusion layers (GDLs) by new manufacturing process. This research using a porous carbon paper that adapts PAN-based carbon-fiber with high gas-permeability and conductivity of CeTech, which breathable ability is 5.7 cm3/cm2.s, and porosity is 78.4%. Using the phenolic resin impregnation method with 0.5 wt% carbon-nano-tube (CNT) to improve the tensile property to 33.99 kPa when the carbon fiber is parallel with its growth aspect, the tensile property is 15.18 kPa when it is vertical whit its growth aspect. Adding 0.5 wt% CNT also can reduce the electrics resistance of GDL from 64.9 mΩ/cm2 to 46.5 mΩ/cm2. It can attenuate the thickness less than 0.2 mm by the attenuating process of the GDL. At last step, micro porous layer (MPL) is sprayed, and surveys that the efficiency of the carbon paper be added 0.5 wt% CNT more 74.9% than the efficiency without CNT be added.
其他識別: U0005-2907200811065700
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.