Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4214
DC FieldValueLanguage
dc.contributor黃泓文zh_TW
dc.contributor張守一zh_TW
dc.contributor李承士zh_TW
dc.contributor.advisor林佳鋒zh_TW
dc.contributor.author施攸螢zh_TW
dc.contributor.authorShih, Yu-Yingen_US
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T06:27:17Z-
dc.date.available2014-06-06T06:27:17Z-
dc.identifierU0005-1308200914322100zh_TW
dc.identifier.citation[1]G. Fasol, “Room-Temperature Blue Gallium Nitride Laser Diode,” Science, Vol.272, pp. 1751(1996) [2]F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, Vol.386,pp.351-359(1997) [3] A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara,“Temperature dependence of electroluminescence intensity of green and blue InGaN single-quantum-well light-emitting diodes” Appl. Phys. Lett.Vol. 79, No. 22,(2001) [4] A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, “Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes”, J. Appl. Phys.Vol. 93, No. 6,(2003) [5] N. Otsuji and K. Fujiwara, , “Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer”, J. Appl. Phys.Vol. 100, 113105,(2003) [6] Y. Yamane and K. Fujiwara,, “Largely variable electroluminescence efficiency with current and temperature in a blue InGaN multiple-quantum-well diode”, Appl. Phys. Lett.Vol.91, 073501 [7]M. Ferhat, and F. Bechstedt, , “First-principles of gap bowing in InxGa1-xN and InxAl1-xN alloys: Relation to structural and thermodynamic properties,” Phys. Rev. B Vol.65, pp. 075213(2002) [8]Kittel, Introduction to Solid State Physical [9]L. Macht, P.R. Hagenan, S. Haffouz, and P. K. Larsen, , “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si(111) substrates,” Appl. Phys. Lett. Vol.87,pp. 131904(2005) [10]Su-Huai Wei, NCPV and Dolar Program Review Meeting, pp. 713(2003) [11]T.Takeuchi,C.Kisielowski,V.Iota,B.A.Weinstein,L.Mattos,N.A.Shapiro,J.Kruger,E.R.Weber,and J. Yang, ,“ Near-field scanning optical microscopy studies of V-grooved quantum wire lasers,” Appl. Phys. Lett.Vol.73,pp.1691(1998) [12] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, N. Kobayashi, and T. Saitoh, , “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy,” Appl. Phys. Lett.Vol.83,pp.4791(2003) [13] P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, , “ InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy,” Apple. Phys. Lett.Vol.73,pp.2778 (1998) [14]Lun Daia, and Bei Zhang, , “Comparison of optical transitions in InGaN quantum well structures and microdisks,” J. Appl. Phys. Vol.89, pp. 4951(2001) [15] Fabio Bernardini, and Vincenzo Fiorentini,“Macroscopic polarization and band offsets at nitride heterojunctions,” Phys. Rev. B, Vol. 57, pp. R9427 (1998) [16]Hadis Morkoc, Nitride Semiconductors and Devices [17]Hisashi Masui, Junichi Sonoda, Nathan Pfaff, Ingrid Koslow, Shuji Nakamura and Steven P DenBaars “Quantum-confined Stark effect on photoluminescence and electroluminescence characteristics of InGaN-based light-emitting diodes”J. Phys. D: Appl. Phys. 41(2008)165105 [18]Di Zhu, Jiuru Xu, Ahmed N. Noemaun, Jong Kyu Kim, E. Fred Schubert, Mary H. Crawford, and Daniel D. Koleske “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes”Apple. Phys. Lett.94, 081113 (2009) [19]Y. Yamane and K. Fujiwara,“Largely variable electroluminescence efficiency with current and temperature in a blue (In, Ga)N multiple-quantum-well diode”Apple. Phys. Lett.91, 073501(2007) [20]A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara,“Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes” J. Appl. Phys. Volume 93, number 6zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/4214-
dc.description.abstract本論文利用變溫光激發螢光系統以及電激發光系統,針對氮化銦鎵結構的發光二極體做了一系列的光性與電性分析。在光激發螢光系統上,以405nm波長的雷射作為激發光源,在外加偏壓測試環境下可以發現室溫(300K)強度因載子熱效應與穿隧效應而快速遞減,導致內部量子效率較實際值低。在外加直流電流(-1mA~1mA)之下觀察變溫電激發光光譜,所得零電流(開路電壓)時之內部量子效率為44.6%與變溫光激發螢光量測所得之41.8%值差異較為接近。在變溫環境下量測EL系統,利用小電流(0.01mA~1mA)以及大電流(20~40mA)觀察在變溫環境下的光性與電性變化。可以發現20毫安電激發光操作下在100K時最強發光強度,所計算之發光強度與發光效率所計算之內部量子效率分為61.6%與64.8%。歸納結論可知(1)在PL系統下外加偏壓,室溫會因穿遂效應的影響導致IQE較實際值低。(2)在零電流(開路電壓)的光激發螢光量測下所求得內部量子效率與一般光激發螢光量測值較為接近。(3)在偏壓光激螢光量測下,外加順向偏壓由於室溫電流大於低溫電流導致IQE與實際值不符。(4)電激發光量測所得之內部量子效率高於光激螢光量測,與元件實際內部量子效率接近。zh_TW
dc.description.abstractIn this thesis, the electrical and optical properties of the InGaN light-emitting diodes were analyzed by the temperature-dependent electroluminescence and photoluminescence systems. During the PL measurement excited by 405nm diode laser, the decreasing PL intensities of the biased LED sample were observed by increasing the measurement temperature that was caused by the thermal and tunneling effect to have the lower internal quantum efficiency (IQE). According to the temperature-dependent EL spectrum under injection current between -1mA to 1mA, the IQE value at Voc (open-circuit voltage) is 44.6% that was close to the temperature-dependent PL IQE value of 41.8%. The changes of the electrical and optical properties were characterized by injected small (0.01mA~1mA) and larger current (20mA~40mA) in the temperature-dependent EL measurement, the strongest EL intensity was observed at 100K. The IQE of EL spectrum intensity and efficiency are 61.6% and 64.8%, respectively. The conclusions are described as following. First, the IQE of PL with bias would be lower than the actual value caused by the tunneling effect at room temperature. Second, the IQE of PL spectrum at zero current condition (open-circuit voltage) is closer to the normal PL value. Third, IQE of bias-dependent PL does not correspond to the actual value because of the current at room temperature is higher than at 30K. Finally, the IQE of EL measurement is higher than PL measurement that the IQE of EL measurement is similar to the actual IQE of InGaN LEDs.en_US
dc.description.tableofcontents中文摘要.......................................................i Abstract.......................................................ii 章節目錄......................................................iii 圖目錄.........................................................v 第一章 序論...................................................1 一、發光二極體.............................................1 二、III-V族半導體簡介......................................1 三、研究動機...............................................2 第二章 原理...................................................4 一、發光能隙...............................................4 (一)直接能隙...............................................4 (二)間接能隙...............................................4 二、發光二極體工作原理.....................................5 三、發光二極體之光取出效率.................................5 (一)定義...................................................5 (二)影響量子效率因素.......................................6 1.內部量子效率..........................................6 2.外部量子效率..........................................7 四、壓電場(Piezoelectric Field)的形成..........................7 (一)應變(Strain)的產生.......................................8 (二)壓電效應(Piezoelectric Effect).............................9 1.自發性極化(Spontaneous Polarization, Psp)現象.............9 2.壓電性極化(Piezoelectric Polarzation, Ppz)現象.............9 第三章 實驗儀器原理與架構....................................18 一、分析原理.............................................18 (一)輻射躍遷(radiative transition)...........................18 1.帶至帶躍遷(band-to-band transition)......................18 2.自由激子躍遷(free exciton transition).....................19 3.自由-束縛能態躍遷(free-to-bound transition)...............19 4.施子-受子對複合(donor-acceptor pair recombination) .......19 (二)非輻射躍遷(non-radiative transition).......................19 二、電激發螢光光譜量測系統(Electroluminescence,EL)...........20 三、光激螢光光譜量測系統(Photoluminescence,PL)..............20 四、變溫系統..............................................21 五、實驗流程架構..........................................21 六、試片製備..............................................21 第四章 實驗結果與討論........................................25 一、PL系統量測...........................................25 (一)反向偏壓.............................................25 (二)零電流...............................................26 二、EL系統量測...........................................27 (一)電流-電壓曲線.........................................27 (二)外加偏壓..............................................28 (三)外加電流..............................................28 第五章 結論與未來展望........................................44 一、實驗結論..............................................44 參考文獻......................................................45zh_TW
dc.language.isoen_USzh_TW
dc.publisher精密工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1308200914322100en_US
dc.subject氮化鎵zh_TW
dc.subjectInGaNen_US
dc.subject發光二極體zh_TW
dc.subjectLEDen_US
dc.title氮化銦鎵發光二極體之光電特性分析zh_TW
dc.titleAnalyzed the electrical and optical properties of the InGaN light-emitting diodesen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:精密工程研究所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.