Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4215
標題: 以熱阻模型與有限元素法分析線性同步馬達之熱傳行為
Utilize Analytical Thermal Model and Finite Element Method for the Heat Transfer Behavior of Synchronous
作者: 夏宏誌
Hsia, Hung-Chih
關鍵字: linear motor;線性馬達;thermal resistance;heat transfer analysis;熱阻;熱傳分析
出版社: 精密工程學系所
引用: [1]. 許溢適編譯,「線型電動機應用手冊」,文笙書局,台北(1991)。 [2]. 陳響亮,謝智尹,「淺談FANUC 控制器應用於線型工具機之相關控制架構」,機械工業雜誌,第二百五十二期,第189-192頁 (2004)。 [3]. 張恩生,「線性馬達工具機之技術發展與應用」,機械工業雜誌,第二百二十九期,第156-161頁(2001)。 [4]. 施傑翔,「以有限元素法對三相線性同步馬達之熱傳模擬分析」,碩士論文,國立中興大學精密工程研究所,台中市(2006)。 [5]. 王萬慶 譯,「如何克服線性馬達之熱量問題」,機械月刊,第二十四卷,第一期,第217-220頁(1998)。 [6]. 劉吉泰,「線性馬達介紹與應用實例」,機械月刊,第三十四卷,第九期,第54-61頁(2008)。 [7]. 黃東雍,「淺談線性馬達」,機械月刊,第二十九卷,第一期,第19-31頁(2008)。 [8]. 陳志明,「高速單軸線性馬達進給平台結構熱變位模擬分析」,碩士論文,國立雲林科技大學機械所,雲林縣(2002)。 [9]. 洪梓育,「龍門定位平台與線性馬達間之熱溫昇與熱應力分析研究」,碩士論文,國立中正大學機械工程研究所,嘉義(2007)。 [10]. 上銀公司,「線性馬達系統技術手冊」,台中市(2007) [11]. Holman, J.P., Heat Transfer, McGraw Hill, New York (2001). [12]. GIERAS, J.F., PIECH, Z.J, Linear Synchronous Motors:Transportation and Automation Systems, CRC Press (1999) [13]. Moaveni, S., Finite Element Analysis:Theory and Application with ANSYS, Prentice Hall, New Jersey (2002) [14]. Suh, J.D, Lee, D.G, “Thermal characteristics of composite sandwich structures,” Composite Structures, Vol.66, pp. 429-438 (2004) [15]. Eun, I.U., “Comparison between Asynchronous and Synchronous Linear Motors as to Thermal Behavior,”Journal of the Korean Society of Precision Engineering, Vol. 2, No. 3, pp. 61-68 (2001) [16]. Techn, SC. and Klaus Budig Peter, H.C., “The Application of LinearMotor,” Power Electronics and Motion Control Conference, Vol. 3, pp. 1336-1341 (2000) [17]. Nirei, M., Tang, Y., T. Mizuno, H. Yamamoto, K. Shibuya and H. Yamada, “Iron loss analysis of moving-coil-type linear DC motor,” Sensors and Actuators, Vol. 81, pp. 305–308 (2000) [18]. Sooriyakumar, G., Perryman, R. and Dodds, S.J., “Analytical thermal modelling for permanent magnet synchronous motors,” International Universities Power Engineering Conference, Brighton , pp. 192-196 (2007) [19]. Chayopitak, N., Taylor, D.G. ,“Thermal Analysis of Linear Variable Reluctance Motor for Manufacturing Automation Applications,” International Electric Machines and Drives Conference, Texas, pp. 866-873 (2005) [20]. Kim, J.Y., Kim, Y.J., Kim, J.O., “Heat Transfer Analysis and Simplified Thermal Resistance Modeling of Linear Motor Driven Stage for SMT Applications,” IEEE Transactions on Components and Packaging Teghghnologies, Vol. 26, No.3, pp. 532-540 (2003) [21]. Churchill, S.W., Chu, H.H.S., “Correlating equations for laminar and turbulent free convection from a vertical plate,” Int. J. Heat Mass Transfer, Vol. 18, pp. 1323-1329 (1975) [22]. Chunting, M., Slemon, G.R., Bonert, R.,“Modeling of iron losses of permanent magnet synchronous motors,” IEEE Transactions on Industry Applications, Vol.39, pp. 734-742 (2003)
摘要: 
為了提高工具機的加工速度與精度,最近幾年線性馬達已被廣泛的使用於工具機中。然而,當線性馬達運行時,馬達內部的溫度通常會超過100℃。而高溫往往會造成產品或零件的加工精度下降甚至造成變形或破壞,因此,線性馬達所產生的熱影響成為製造科技上必須瞭解與克服的問題。
本研究探討線性馬達的溫升過程並使用兩種方法來分析,一種是迅速簡單的熱阻求解法,另一種是三維有限元素法熱傳模擬分析。此外,並同樣使用有限元素法模擬分析線性馬達移動時的氣流場與熱對流。文中並對線性馬達運行時產生的熱損耗條件包含銅損耗和渦流與遲滯產生的鐵損耗做計算探討。於分析結果的比較中,發現有限元素法模擬結果與實驗量測值的誤差在3℃以內,而熱阻計算結果與有限元素法模擬結果誤差在2℃以內。本研究所得之結果可驗證熱阻與有限元素法均能有效預測在一般產業應用上之線性馬達運行時的溫升與整體精度之影響。

To enhance precision and to increase the speed of machine tools, linear motors have been broadly applied to machine tools in recent years. However, heat generated inside the linear motor can usually has the degree higher than 100℃.This may cause thermal damage in products and reduce performance of the motor itself. Therefore, to understand the heat problems of linear motor is one of the most important issues in modern manufacturing technologies.
In this paper, the thermal characterization of a linear motor had been studies to analyze the temperature distribution during operation using two essential methods. One is the thermal resistance method, another is the finite element method. In addition, the CFD analysis on linear motor is calculated with respect to natural and forced cooling using of finite element method. Also, the motor's heat loss conditions include the copper loss, eddy current loss and hysteresis loss had been discussed. The results compared with the previous experiments show the discrepancy did not exceed 3 ℃. and the comparison between thermal resistance and the finite element method analysis shows the discrepancy did not exceed 2 ℃.
In conclusing, the use of thermal resistance model can achieve as accurate as finite element method for the heat transfer behavior analysis of linear motor and agree with experiments. Both methods provide useful information for thermal behavior of linear motor application for modern manufacturing.
URI: http://hdl.handle.net/11455/4215
其他識別: U0005-1308200916004500
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.