Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4224
標題: 不同粗化形貌對氮化銦鎵發光二極體取光效率及接面溫度特性影響之研究
Effects of various surface texturing on Light Extraction and Relative Junction Temperature of InGaN LEDs
作者: 廖子維
Liao, Tzu-Wei
關鍵字: GaN;氮化鎵;photonic crystal;laser lift-off (LLO);Flip-Chip;光子晶體;雷射剝離技術;覆晶式發光二極體
出版社: 精密工程學系所
引用: [1] N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, “Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire”, Appl. Phys. Lett. 76, 1804 (2000). [2] T. C. Wen, S. J. Chang, L. W. Wu, Y.K. Su, W.C. Lai, C.H. Kuo, C.H. Chen, J.K. Sheu, and J.F. Chen, “InGaN/GaN Tunnel-Injection Blue Light-Emitting Diodes” , Electron Devices, IEEE Transactions 49,1093 (2002). [3] D. B. Eason, W. C. Hughes, J. Ren, M. Riegner, Z. Yu, J.W. Cook, J. F. Schetzina, G. Cantwell, and W.C. Harsch, “High-brightness green light-emitting diodes”, Electron. Lett. 30, 1178 (1994). [4] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes”, App. Phys. Lett. 58, 1010 (1991). [5] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes”, App. Phys. Lett. 61, 1752 (1992). [6] D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High-brightness AlGaInP light emitting diodes”, IEEE. 85, 1752 (1997). [7] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys. 34, L1332 (1995). [8] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett. 64, 2839 (1994). [9] F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerwald, G. E. Hofler, K. G. Park, and F. M. Steranka, “High reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes”, Electron. Lett. 32, 132 (1996). [10] S. Yoshida, S. Misawa, and S. Gonda, “Epitaxial growth of GaN/AlN heterostructures”, Journal of Vacuum Science & Technology B. 1, 250 (1982). [11] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York: Wiley and Sons (2002). [12] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitter Diodes. London: Taylor and Francis, (2000). [13] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Berlin: Springer, (2000). [14] Kevin Linthicum, Thomas Gehrke, Darren Thomson, Eric Carlson, Pradeep Rajagopal, Tim Smith, Dale Batchelor, and Robert Davis, “Pendeoepitaxy of gallium nitride thin films”, Appl. Phys. Lett., 75, p.196, (1999). [15] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., 84, p.855, (2004). [16] Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., 93, p.9383, (2003). [17] http://www.cree.com/ftp/pub/CPR3CM.pdf, High Power Blue LED chips (SiC substrate) have a geometrically enhanced Epi-down design to maximize light extraction efficiency, and require only a single wire bond connection. [18] M. R. Krames, G. Christenson, D. Coffins., L. W. Cook M. G. Craford, A. Edwards, R. M., Fletcher, N. Gardner, W. Goetz, W. Imler, E. Johnson, R. S. Kern, R. Khare, F. A. Kish, C. Lowery, M. J. Ludowise, R. Mann, M. Maranowski, S. Maranowski, P. S. Martin, J. O''Shea, S. Rudaz, D. Steigerwald, J. Thompson, J. J. Wierer, J. Yu, SPIE Proc. 3938, 2 (2000). [19] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys. 93, p.9383, (2003). [20] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu, and C. T. Lee, “A Novel Straight Arrayed Waveguide Grating With Linearly Varying Refractive-Index Distribution”, IEEE Photon Technol. Lett. 16, p.144 (2004). [21] S. M. Pan, R. C. Tu, Y.M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced Output Power of InGaN–GaN Light-Emitting Diodes With High-Transparency Nickel-Oxide–Indium-Tin-Oxide Ohmic Contacts”, IEEE Photon Technol. Lett. 15, p.646 (2003). [22] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN–GaN Light-Emitting Diodes With Surface-Textured Indium–Tin–Oxide Transparent Ohmic Contacts”, IEEE Photon Technol. Lett. 15, p.649 (2003). [23] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-Based LEDs With Textured Side Walls”, IEEE Photon Technol. Lett. 16, p.750 (2004). [24] Jun-Yi Wu, Jun-Sheng Li, Ray-Hua Horng, and Dong-Sing Wuu, ” Enhanced Light Extraction for Blue Light-Emitting Diodes by Periodic Surface Texturing”, IEDMS 2008, 572. [25] 史光國,“半導體發光二極體及固態照明”, 全華科技圖書股份有限公司出版, 2-52, (2005). [26] M. Boroditsky, T. F. Krauss, R. Coccioli, R. vrijen, R. Bhat and E.Yablovitch, “Light extraction from optically pumbed light-emitting diode by thin-slab photonic crystals”, Appl. Phys.Lett., 75, p.1036 (1999). [27] H. Y. Ryn, J. K. Hwang, Y. J. Lee and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures”, IEEE Selected topics in QE, 8, p.231 (2002). [28] Z. S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung, and M. C. Yoo, “Enhancement of (In,Ga)N Light-Emitting Diode Performance by Laser Liftoff and Transfer From Sapphire to Silicon”, IEEE Photon Technol. Lett. 14, p.1400 (2002). [29] Ray-Hua. Horng, Xinhe. Zheng, Chuang-Yu. Hsien and Dong-Sing. Wuu, “Light extraction enhancement of InGaN light-emitting diode by roughening both undoped micropillar-structure GaN and p-GaN as well as employing an omnidirectional reflector”, Appl. Phys.Lett., 93, p.021125, (2008). [30] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates”, IEEE Photon. Technol. Lett., 17, 2, 288, b, (2005). [31] 史光國, “半導體發光二極體及固態照明”, 全華科技,臺北,台灣, 2.1, (2005). [32] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation of GaN-based cross-sectional TEM specimens by laser lift-off”, Micron, 36, p.281 (2005). [33] M. V. Allmen and A. Blastter, Laser-Beam Interactions with Materials: Physical Principles and Application, 2nd Springer Publisher, Berlin (1995). [34] R. Groh, G. Gerey, L. Bartha and J. I. Pankove, “On the thermal decomposition of GaN in vacuum”, Phys. Stat. Solidi. (a), 26, p.353 (1974). [35] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan , M. Razeghi and D. K. Gaskill, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001)Si 6H-SiC substrates“, J. Appl. Phys., 76, p.236 (1994). [36] M. E. Lin, B. N. Sverdlov and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy”, Appl. Phys. Lett., 63, p.3625 (1993). [37] W.S. Wong, Y. Cho, N.J. Quitoriano, T. Sands, A.B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser liftoff”, J. Electronic Mater., 28, p.1409 (1999). [38] 謝創宇, 具雙面粗化及高反射鏡面基板之高效率氮化鎵發光二極體之研製, 中興大學精密工程研究所碩士學位論文 (2008). [39] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu and C. C. Lin, “Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface”, Mater. Sci. & Eng. B, 112, 10, (2004). [40] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 6, p.3172 (1998). [41] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett. 74, p.1275 (1999). [42] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation”, J. Appl. Phys. 86, p.4491 (1999). [43] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions”, Appl. Phys. Lett. 78, p.3265 (2001). [44] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices”, Appl. Phys. Lett. 74, p.3930 (1999). [45] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN”, Appl. Phys. Lett. 79, p.2925 (2001). [46] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke and J. K. Sheu, “High Brightness InGaN Green LEDs With an ITO on n++-SPS Upper Contact”, IEEE Trans. Electron Devices, 50, 11, p.2208 (2003). [47] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced Output Power of InGaN–GaN Light-Emitting Diodes With High-Transparency Nickel-Oxide–Indium-Tin-Oxide Ohmic Contacts”, IEEE Photo Technol. 15, p.646 (2003). [48] JAMES L. JELLISON, ”Kinetics of Thermocompression Bonding to Organic Contaminated Gold Surfaces”, IEEE Trans. Parts, Hybrids, Packaging., Kinetics of Thermocompression Bonding to Organic Contaminated Gold Surfaces, 13, 2, (1977). [49] P. Blcnius, ”Flip Chip Bumping for IC Packaging Contractors”, Flip Chip Technologies Website, (1998). [50] Deborah S. Patterson, Peter Elenius, James A. Leal,”Wafer Bumping Technologies – A Comparitive Analysis for Solder Deposition Processes and Assembly Considerations “ INTERPack `97, June 15-19 (1997), EEP-Vol. 19-1, Advances in Electronic Packaging – 1997, ASME, 337, (1997). [51] Yewchung Sermon Wu, Ji-Hao Cheng, Wei Chih Peng, and Hao Ouyang, ”Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes”, Appl. Phys. Lett,. 90, p.2511101 (2007). [52] L. Ma, K. F. Adeni, C. Zeng, Y. Jin, K. Dandu, Y. Saripalli, M. Johnson, D. Barlage, CS MANTECH Conference, 24 (2006). [53] Gábor Farkas, Quint van Voorst Vader, András Poppe, and György Bognár, “Thermal Investigation of High Power Optical Devices by Transient Testing” IEEE Transactions on components and packaging technologies, 28, 1, (2005). [54] C. P. Wang and S. B. Huang , 工業材料雜誌, 266, p.1 (2009). [55] 嚴國瑋, 具高反射鏡面之金屬銅基板氮化鎵發光二極體之研製, 中興大學 精密工程研究所碩士學位論文 (2007). [56] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames ”High performance thin-film flip-chip InGaN light-emitting diodes”, Appl. Phys. Lett. 89, p.071109 (2006). [57] 吳俊儀, 週期性表面粗化氮化鎵發光二極體之研製, 中興大學精密工程研 究所碩士學位論文 (2008). [58] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, Micron, 36, p.281 (2005).
摘要: 
論文主要將雷射剝離(laser lift-off;LLO)與粗化技術應用在覆晶式發光二極體(flip-chip;FC)上以及將光子晶體結構(photonic crystall;PC)製作於n-GaN表面再利用基板轉移技術結合高反射鏡面基板之元件並探討元件特性及製程可行性。其中移除基板後之覆晶式發二極體(thin- film flip-chip;TFFC)討論不具圖形化(Flat)及具圖形化(PSS)基板之元件而基板轉移元件是在n-GaN磊晶膜上製作尺寸450nm、600nm及900nm之光子晶體再行貼合。探討不同結構及不同粗化方式對發光二極體之光功率的表現。最後利用暫態熱阻分析量測儀器探討發光二極體每一層結構所造成的熱阻。
在電流350 mA注入下,光特性方面,光輸出功率方面TFFC-double rough(DR)-Flat-LED較FC-single rough(SR)-Flat-LED 提升36.2%,FC-SR-PSS-LED較TFFC-DR-PSS-LED提升7.4%。Si-450nm-PC-LED、Si-600nm-PC-LED及Si-900nm-PC-LED較Sapphire-SR-LED分別提升28.2%、32.7%及20.2%。電光轉換效率方面,具圖形化基板元件由14.33%提升至20.96%,不具圖形化基板元件由10.83%提升至14.54%,Si-450nm-PC-LED、Si-600nm-PC-LED及Si-900nm-PC-LED提升情形由16.18%分別提升16.38%、20.05%及15.59%。光取出效率方面, 圖形化基板元件由30.69% 提升至41.82%,不具圖形化基板元件由49.81%提昇至53.51%。具Si-450nm-PC-LED、Si-600nm-PC-LED與Si-900nm-PC-LED由51.08%分別提升至65.47%、67.79%與61.39%。

This thesis discussed the effects of laser lift-off (LLO) and surface roughness applicated on flip-chip (FC) and fabricated a device with photonic crystal structure on n-GaN surface combined with high reflectivity mirror. The samples of thin film flip-chip (TFFC) were fabricated on unpatterned (Flat) and patterned substrate (PSS). Fabrication of photonic crystal (PC) structures, with period of 450nm, 600nm, and 900nm, on n-GaN surface were bonded to silicon substrate with aluminum mirror by transparent adhesive layer. Finally, the measurement of each layer thermal resistance was tested with thermal resistance method.
On the leakage current, drove on -5 V, all samples presented less than 1uA performance. On the optical characteristic, a 350 mA current injection to encapsulated TFFC-double rough(DR)-Flat-LED enhanced 36.2% output power as compared with FC-single rough(SR)-Flat-LED, whereas TFFC-DR-PSS-LED increased 7.4% as compared with FC-SR-PSS-LED. Si-450nm-PC-LED, Si-600nm-PC-LED, and Si-900nm-PC-LED increased 28.2%, 32.7%, and 20.2%, as compared with Sapphire-SR-LED.
The power efficiency of FC-SR-Flat-LED, TFFC-DR-Flat-LED, FC-SR-PSS-LED, TFFC-DR-PSS-LED, Sapphire-SR-LED, Si-450 nm-PC-LED, Si-600 nm-PC-LED, and Si-900 nm-PC-LED are 14.33%, 20.96%, 10.83%, 14.54%, 16.18%, 16.38%, 20.05%, and 15.59%, respectively, whereas light extraction efficiency are 30.69%, 41.82%, 49.81%, 53.51%, 51.08%, 65.47%, 67.79% and 61.39%, repectively.
URI: http://hdl.handle.net/11455/4224
其他識別: U0005-1808200923104400
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.