Please use this identifier to cite or link to this item:
標題: 以感應式耦合電漿化學氣相沈積在聚碳酸酯 基板上研製透明阻氣膜
Fabrication of transparent barrier coatings on polycarbonate substrates by ICPCVD
作者: 賴誠忠
Lay, Eddy
關鍵字: WVTR;水氣透過率;ICPCVD;barrier;resistivity method;Parylene-C.;高密度電漿化學氣相沈積;阻氣膜;電阻法;聚-對二甲苯
出版社: 精密工程學系所
引用: References [1] F. J. Meyer et. al., ‘Growth dynamics of pentacene thin films,' Nature, vol. 412, pp. 517-520, 2001. [2] M. D. J. Auch, K. S .Ong, E. Guenther, S. J. Chua, ‘Ultrathin glass for flexible OLED application,' Thin Solid Films, vol. 417. pp. 47-50, 2002. [3] C.C. Wu, S.D. Theiuss, G. Gu, M.H. Lu, J.C. Sturm, S. Wagner, S. R. Forrest, ‘Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates,' IEEE Electron Device Letters, vol. 18, pp. 609-612, 1997. [4] S. R. Forrest, ‘The path to ubiquitous and low-cost organic electronic appliances on plastic,' Nature, vol. 412, pp. 911-918, 2004. [5] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, ‘Reliability and degradation of organic light emitting devices,' Applied Physics Letters, vol. 65, pp. 2922-2924, 1994. [6] G. P. Crawford, Flexible Flat Panel Display, West Sussex: John Wiley & Sons Ltd, 2005, pp. 11-31. [7] S. F. Lim, L. Ke, W. Wang, and S. J. Chua, ‘Correlation between dark spot growth and pinhole size in organic light-emitting diodes,' Applied Physics Letters, vol. 78, pp. 2116-2118, 2001. [8] A. B. Chwang et. al., ‘Thin film encapsulated flexible organic electroluminescent displays,' Applied Physics Letters, vol. 81, pp. 413-415, 2003. [9] G. L. Graff, R. E. Williford, and P. E. Burrows, ‘Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation,' Journal of Applied Physics, vol. 78, pp. 1840-1849, 2004. [10] T. T. Tseng and H. S. Nalwa, Handbook of Nanoceramics and Their Based Nanodevices, Los Angeles: American Scientific Publishers, 2009, pp. 429-455. [11] J. S. Lewis, and M. S. Weaver, ‘Thin-film permeation-barrier technology for flexible organic light-emitting devices,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 45-57, 2004. [12] Y. Leterrier, ‘Durability of nanosized oxygen-barrier coatings on polymers,' Progress in Materials Science, vol. 48, pp. 1-55, 2003. [13] G. Rochat, Y. Leterrier, P. Fayet and J. A.E. Manson, ‘Stress controlled gas-barrier oxide coatings on semi-crystalline polymers,' Thin Solid Films, vol. 484, pp. 94-99, 2005. [14] M. Schaepkens, T. W. Kim, A. G. Erlat, M. Yan, K. W. Flanagan, C. M. Heller, and P. A. McConnelee, ‘Ultrahigh barrier coating deposition on polycarbonate substrates,' Journal of Vacuum Science and Technology A, vol. 22, pp. 1716-1722, 2004. [15] A. S. da Silva Sobrinho, M. Latreche, G. Czeremuszkin, J. E. Klemberg-Sapieha, and M. R. Wertheimer, ‘Transparent barrier coatings on polyethylene terephthalate by single- and dual-frequency plasma-enhanced chemical vapor deposition,' Journal of Vacuum Science and Technology A, vol. 16, pp. 3190-3198, 1998. [16] T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, ‘High-performance transparent barrier films of SiOX/SiNX stacks on flexible polymer substrates,' Journal of The Electrochemical Society, vol. 153, pp. F244-F248, 2006. [17] H. K. Kim, S. W. Kim, D. G. Kim, J. W. Kang, M. S. Kim, and W. J. Cho, ‘Thin film passivation of organic light emitting diodes by inductively coupled plasma chemical vapor deposition,' Thin Solid Films, vol. 515, pp. 4758-4762, 2007. [18] A. Heya et al., ‘Cat-CVD SiN passivation films for OLEDs and packaging,' Thin Solid Films, vol. 516, pp. 553-557, 2008. [19] M. C. Lin, C. H. Tseng, L. S. Chang, D. S. Wuu, ‘Characterization of the silicon oxide thin films deposited on polyethylene terephthalate substrates by radio frequency reactive magnetron sputtering,' Thin Solid Films, vol. 515, pp. 4596-4602, 2007. [20] P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, and S. M. George, ‘Ca test of Al2O3 gas diffusion barrier grown by atomic layer deposition on polymers,' Applied Physics Letters, vol. 89, 031915, 2006. [21] J. Meyer et al., ‘Al2O3/ZrO2 Nanolaminates as ultrahigh gas-diffusion barriers-a strategy for reliable encapsulation of organic electronics,' Advanced Materials, vol. 21, pp. 1-5, 2009. [22] M.C. Lin, L. S. Chang, and H.C. Lin, ‘Effects of nitrogen partial pressure on titanium oxynitride films deposited by reactive RF magnetron sputtering onto PET substrates,' Surface and Coatings Technology, vol. 202, pp. 5440-5443, 2008 [23] P. Mandlink et al., ‘A single-layer permeation barrier for organic light-emitting displays,' Applied Physics Letters, vol. 92, 103309, 2008. [24] P. E. Burrows et al., ‘Ultra barrier flexible substrate for flat panel displays,' Displays, vol. 22, pp. 65-69, 2001. [25] A. B. Chwang et al., ‘Thin film encapsulated flexible organic electroluminescent displays,' Applied Physics Letters, vol. 83, pp. 413-415, 2003. [26] T. W. Kim et al., ‘Transparent hybrid inorganic/organic barrier coatings for plastic organic light-emitting diode substrates,' Journal of Vacuum Science and Technology A, vol. 23, pp. 971-977, 2005. [27] N. Kim, W. J. Potscavage, Jr., B. Domercq, B. Kippelen, and S. Graham, ‘A hybrid encapsulation for organic electronics,' Applied Physics Letters, vol. 94, 163308, 2009. [28] Http:// [29] T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, Y. P. Chen, and R. H. Horng, ‘Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications,' Plasma Processes and Polymers, vol. 4, pp. 180-185, 2007. [30] J. H. Choi, Y. M. Kim, Y. W. Park, J. W. Huh, and B. K. Jua, ‘Evaluation of gas permeation barrier properties using electrical measurements of calcium degradation,' Review of Scientific Instruments, vol. 78, pp. 064701-1-064701-5, 2007. [31] X. D. Zhang, J. S. Lewis, C. B. Parker, J. T. Glass, and S. D. Wolter, ‘Measurement of reactive and condensable gas permeation using a mass spectrometer,' Journal of Vacuum Science and Technology A, vol. 26, pp. 1128-1137, 2005. [32] R. Dunkel, R. Bujas, A. Klein, and V. Horndt, ‘Method of measuring ultralow water vapor permeation for OLED displays,' Proceedings of IEEE, vol. 93, pp. 1478-1482, 2005. [33] A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean, and S. M. George, ‘Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and Rapid SiO2 atomic layer deposition,' The Journal of Physical Chemistry C, vol. 112, pp. 4573-4580, 2008. [34] Y. Ra, ‘Plasma processing system with a new inductive antenna and hybrid coupling of electromagnetic power,' U. S. Patent No. 6,310,577, filed Aug. 24, 1999. [35] J. R. Fried, Polymer science and technology, New Jersey: Prentice Hall Press, 1995, pp. 124-144. [36] Q. Yu, J. Deffeyes, and H. Yasuda, ‘Corrosion protection of ion vapor deposition Al-coated Al alloys by low-temperature plasma interface engineering,' Progress in Organic Coating, vol. 41, pp. 247-251, 2001. [37] F. M. Fowkes, ‘Determination of interfacial tensions contact angles and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces,' The Journal of Physical Chemistry , vol. 66, pp. 382, 1962. [38] Y. Shirota, and H. Kageyama, ‘Charge carrier transporting molecular materials and their applications in devices,' Chemical Reviews, vol. 107, pp. 953-1010, 2007. [39] M. A. Pereira, J. A. Diniz, I. Doi, J. W. Swart, ‘Silicon nitride deposited by ECR-CVD at room temperature for LOCOS isolation technology,' Applied Surface Science, vol. 212-213, pp. 388-392, 2003. [40] C. Blaauw, ‘Preparation and characterization of plasma-deposited silicon nitride,' Journal of the Electrochemical Society: Solid-State Science and Technology, vol. 131, pp. 1114-1118, 1984. [41] H. Gleskova, S. Wagner, V. Gasparik, and P. Kovac, ‘Low-temperature silicon nitride for thin-film electronics on polyimide foil substrate,' Applied Surface Science, vol. 175-176, pp. 12-16, 2001. [42] M. N. P. Carreno, M. I. Alayo, I. Pereyra, and A.T. Lopes, ‘PECVD-SiOXNY films for large area self-sustained grids applications,' Sensors and Actuators A, vol. 100, pp. 295-300, 2002. [43] M. P. Besland, M. Lapeyrade, F. Delmotte, and G. Hollinger, ‘Interpretation of stress variation in silicon nitride films deposited by electron cyclotron resonance plasma,' Journal of Vacuum Science and Technology A, vol. 22, pp. 1962-1970, 2004. [44] W. C. Hsiao, C. P. Liu, and Y. L. Wang, ‘Influence of RF bias on hydrogenated amorphous silicon by high-density plasma chemical vapor deposition,' Journal of The Electrochemical Society, vol. 154, pp. G122-G126, 2007. [45] M. C. Hung, M. T. Wang, and T. W. Ger, ‘Method of forming an HDP CVD oxide layer over a metal line structure for high aspect ratio design rule,' U. S. Patent No. 6,566,263, filed Aug. 2, 2000. [46] D. S. Wuu, T. N. Chen, C. C. Wu, C. C. Chiang, Y. P. Chen, R. H. Horng, and F. S. Juang, ‘Transparent barrier coatings for flexible organic light-emitting diode applications,' Chemical Vapor Deposition, vol. 12, pp. 220-224, 2006. [47] T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, Y. P. Chen, R. H. Horng, ‘Improvements of permeation barrier coatings using encapsulated parylene interlayers for flexible electronic applications,' Plasma Processes and Polymers, vol. 4, pp. 180-185, 2007. [48] W. A. P. Claassen, W. G. J. N. Valkenburg, M. F. C. Willemsen, and W. M. v. d. Wijgert, ‘Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers,' Journal of The Electrochemical Society, vol. 132, pp. 893-898, 1985. [49] P. G. Llana, and M. C. Boyce, ‘Finite strain behavior of poly(ethylene terephthalate) above the glass transition temperature,' Polymer, vol. 40, pp. 6729-6751, 1999. [50] T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, H. B. Lin, Y. P. Chen. and R. H. Horng, ‘Effects of plasma pretreatment on silicon nitride barrier films on polycarbonate substrates,' Thin Solid Films, vol. 514, pp. 188-192, 2006. [51] J. E. Klemberg-Sapieha, D. Poitras, L. Martinu, N. L. S. Yamasaki, and C. W. Lantman, ‘Effects of interface on the characteristics of functional films deposited on polycarbonate in dual-frequency plasma,' Journal of Vacuum Science and Technology A, vol. 15, pp. 985-991, 1997. [52] S. Vallon, B. Drevillon, F. Poncin-Epaillard, J. E. Klemberg-Sapieha, and L. Martinu, ‘Argon plasma treatment of polycarbonate: In situ spectroellipsometry study and polymer characterization,' Journal of Vacuum Science and Technology A, vol. 14, pp. 3194-3201, 1996. [53] M. Miyauchi, and O. Ohara, ‘Polycarbonate resin composition,' U. S. Patent No. 4,762,873, filed Jun. 12, 1986. [54] J. P. Han, and T. P. Ma, ‘SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer,' Applied Physics Letters, vol. 72, pp. 1185-1186, 1998. [55] E. Tokumitsu, G. Fuji, and H. Ishiwara, ‘Nonvolatile ferroelectric-gate field-effect transistors using SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structure,' Applied Physics Letters, vol. 75, pp. 575-577, 1999. [56] J. H. Choi, Y. M. Kim, Y. W. Park, T. H. Park, K. Y. Dong, and B. K. Ju, ‘Hydrophobic nanopatterning on a flexible gas barrier film by using a poly(dimethylsiloxane) elastomer,' Nanotechnology, vol. 20, pp. 135303-1-135303-6, 2009. [57] G. Dennler, C. Lungenschmied, H. Neugebauer, N. S. Sariciftci, M. Latreche, G. Czeremuszkin, and M. R. Wertheimer, ‘A new encapsulation solution for flexible organic solar cells,' Thin Solid Films, vol. 511-512, pp. 349-353, 2006. [58] Http:// [59] E. Psomiadou, I. Arvanitoyannis, C. G. Biliaderis, H. Ogawa, and N. Kawasaki, ‘Biodegradable films made from low density polyethylene (LDPE) wheat starch and soluble starch for food packaging applications,' Carbohydrate Polymers, vol. 33, pp. 227-242, 1997.

在可撓性高分子基材中,水氣和氧氣穿透高分子基材的能力常被視為臨界指標之一,而水氣穿透的程度大大的影響了元件壽命,而高分子基材上的阻氣層可分為兩類:上阻氣層和下阻氣層。下阻氣層的沈積溫度常又受限於高分子基材的玻璃轉移溫度影響,反之上阻氣層受限於元件內部有機化合物的玻璃轉移溫度。本論文將介紹感應式耦合電漿化學氣相沈積在薄膜技術中相對於其他化學氣相沈積系統能有較低的沈積溫度和能夠有高品質的無機薄膜(氮化矽和氧化矽) 。除此之外,高密度電漿化學氣相沈積的另一優勢可提供濺鍍沈積能力來鍍製高密度薄膜,可在線上(in-situ)以氬氣電漿在高分子基材上做前處理來減少沈積無機上阻氣層時所發生削角現象。本論文,主要著重在研究前驅物的比例、射頻功率、沈積壓力和射頻偏壓等參數來降低阻氣膜的水氣透過率數值,而在高分子基材上的氮化矽/氧化矽多層無機阻氣膜堆疊聚-對二甲苯其阻氣能力需達到有機發光二極體範圍(~10-6 g/m2/day),故我們另外研究以電阻法方式來量測,量測溫度在40°C和相對濕度在90%,而在恆溫恆濕狀態下做長期觀察。


The permeation of water vapor and oxygen through polymeric substrate is one of the most critical subjects in polymer-based flexible devices. This permeation will result in tremendous decreasing of devices lifetime. Development of the barrier coatings on polymeric substrates can be categorized into two classes: bottom and top barrier. Deposition temperature of bottom barrier is limited to the glass transition temperature (Tg) of polymeric substrate, whereas the top barrier is limited to the Tg of organic compounds inside the devices. Inductively coupled plasma chemical vapor deposition (ICPCVD) is introduced to barrier coatings technology due to the capability of this apparatus to deposit high quality inorganic materials (SiOx and SiNx) in low temperature compare to other CVD systems. Besides this major advantage, ICPCVD also provide sputter ability to deposit denser films, in-situ Ar pretreatment on the polymer surface, and reduce the overhang formation during the deposition of inorganic material as top barrier. In this study, the effects of precursors ratio, source radio frequency (RF) power, deposition pressure, and bias RF were studied to reduce the water vapor transmission rate (WVTR). The WVTR of SiNx/SiOx multilayer structures on PC substrates were measured by resistivity method under the isothermal and isohumid condition of 40C and 90% relative humidity to meet the WVTR requirement for organic light emitting displays (<10-6 g/m2/day).
其他識別: U0005-1908200916242300
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.