Please use this identifier to cite or link to this item:
標題: 流體驅動之電磁式能量產生器
Electromagnetic energy harvesting from fluid induced vibration
作者: 張愷恆
Chang, Kai-Hun
關鍵字: electromagnetic energy harvester;電磁式能量產生器;PE diaphragm;permanent magnet;solenoid;致動薄膜;永久磁鐵;螺旋線圈
出版社: 精密工程學系所
引用: 賴騰憲,2006,聲波致動式微型發電機於手機能源系統之應用,逢甲大學,碩士論文。 鄭有青,2004,壓電無閥式微幫浦驅動系統之研製,逢甲大學,碩士論文。 黃玉婷、唐敏注,電磁式能量擷取發電裝置,世界材料網。 陳振宏,微幫浦之Nozzle/Diffuser之研究,逢甲大學,碩士論文,2005。 章賢聰,用於無閥阻抗微幫浦之新型微電磁致動器之設計、製作與最佳化,大葉大學,博士論文,2007。 E. Stemme, G. Stemme, “A valveless diffuser/nozzle-based fluide pump, Sens. Actuators A39. pp159-167.1993. C.B. Williams and R.B. Yates, “Analysis of a micro-electric generator for Microsystems ,” Sensors and Actuators A: Physical, Vol. 52, Issues 1-3, pp. 8-11, March-April 1996. P. Glynne-Jones, M. J. Tudor, S. P. Beeby and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sensors and Actuators A: Physical, Vol. 110, Issues 1-3, pp. 344-349,1 February 2004. S.P. Beeby, M.J. Tudor, E. Koukharenko, N.M. White, T. O’Donnell, C. Saha, S. Kulkarni and S. Roy, “Design and performance of a microelectromagnetic vibration-powered generator,” 2005. TRANSDUCERS''05. The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 780 – 783, June 5-9 2005. H. Kulah and K. Najafi, “An electromagnetic micro power generator for low frequency environmental vibrations,” 17th IEEE International Conference on Micro Eletro Mechanical System (MEMS), pp. 237-240, 2004. W.J. Li, Terry C.H. Ho, Gordon M.H. Chan, Philip H.W. Leong and H.Y. Wong, “Infrared signal transmission by a laser-micromachined vibration-induced power generator,” 2000 Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Vol. 1, pp. 236 - 239, 2000. R.W. Fox, S.J. Kline,”Flow Regime Data and Design Methods for Curved Subsonic Diffusers” Journal of Basic Engineering,Vol.84, pp. 303-312, 1962. Frank M. White, Fluid Mechanics Sixth Edition and McGraw-Hill, 2008. Edward M. Purcell, Electricity and Magnetism, Berkeley Physics Course, Vol. 2, 2004. Erik Stemme and Goran Stemme, “A valveless diffuser/nozzle-based fluid pump,” Sensors and Actuators A, Vol. 39, pp.159-167, 1993. K.-T. Chang and M. Ouyang, “Rotary ultrasonic motor driven by a disk-shaped ultrasonic actuator,” IEEE Transactions on Industrial Electronics, Vol. 53, pp. 831- 837, 2006. Lei Wang and F G Yuan, “Vibration energy harvesting by magnetostrictive material,” Smart Material and Structures, Vol, 17, 045009 (14pp), 2008. Peihong Wang, Katsuhiko Tanaka, Susumu Sugiyama, Xuhan Dai, Xiaolin Zhao and Jingquan Lin, “A micro electromagnetic low level vibration energy harvester based on MEMS technology,” Microsyst Technol, Vol, 15, pp. 941-945, 2009. B.Wagner, W. Benecke, G. Engelmann and J. Simon, “Microactuators with moving magnets for linear, torsional, or multiaxial motion”, Sensors and Actuators A, 32, pp. 598-603, 1992. W.C.Tang, T.-C.H. Nguyen, M.W. Judy and R.T. Howe, “Electrostatic combdrive of lateral polysilicon resonators” Sensora and Actuators A, 21-23, pp. 328-331, 1990. B.D. Cullity, Introduction to magnetic materials, Addison-Wesley, Reading, MA, pp. 527, 1972. B. Wagner and W. Benecke, “Microfabricated actuator with moving permanent magnet,” in Proc. IEEE Microelectro-Mechanical Systems Workshop, pp. 27-32, 1991. R.E. Hetrick, “A vibrating cantilever magnetic field sensor,” Sensors and Actuators, vol. 6, pp. 197-207, 1989. R.F. Soohoo, “Magnetic thin film inductor for integrated circuit application” IEEE Trans. Magn. Vol. 15, no.6, pp. 1803-1805, 1979. C. Sherawood and R.B. Yates, “Development of an electromagnetic microgenerator, ” Electronics Letters 23rd, Vol. 33, No.22, 1997. P. Glynne-Jones, M. J. Tudor, S. P. Beeby and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems” Sensors and Actuators A: Physical, Vol. 110, Issues 1-3, pp. 344-349,1. 2004. Trifon M. Liakopoulos, Wenjin Zhang, and Chong H. Ahn, “Electroplated Thick CoNiMnP Permanent Magnet Arrays For Micromachined Magnetic Device Applications,” IEEE. 1996. Beeby S P, Tudor M J and White N M “Energy harvesting vibration sources for Microsystems application ” Meas. Sci. Technol. 17 R175-95.2006. Roundy S “On effectiveness of vibration-based emergy harvesting” J. Intell. Mater. Syst. Struct.16 pp.809-823.2005. H. Raisigel, O. Cugat, J. Delamare, “Permanent magnet planar micro-generators”Sensors and Actuators, A 130-131. pp. 438-444. 2006. A. S. Holmes, G. Hong, K. R. Pullen, “ Axial-flux permanent magnet machines for micropower generation, J. Microelectromech. Syst. 14. pp. 54-62. 2005.
量測部分,使用光感位移計量測PE薄膜振幅,並藉由NI PCI-5114示波器卡擷取螺旋線圈感應的電壓值,利用拉壓力計得到其薄膜和永久磁鐵的靜態位移量。使用壓力感測器量測其腔體中流體壓力。並將量測結果與模擬相比較。

This thesis aimed to discuss an electromagnetic energy harvester. Motion of a fluid driven by a 30 Hz pulse pump is used to activate the electromagnetic energy harvester. The periodic motion of the fluid in the chamber causes a harmonic vertical deflection in the diaphragm on which a permanent magnet is attached. Subsequently, the vibration of this magnet induces an output voltage in a solenoid hanging above it.
In simulation, ABAQUS 6.4 finite element method simulation software provided by NCHC was utilized to simulate the displacement of PE film and the permanent magnet. The induced voltage in the solenoid is calculated by using Ansoft Maxwell 10.0.
In the fabrication process, acrylic was used as material for the fluidic chamber. The chamber was designed in a commercial CAD software, SolidWorks 2006. The design was then fabricated by a CAM machine, PNC-3100 metal micro manufacturing machine.
In the measurement, the dynamic deflection of the PE diaphragm is measured by a fiber optic sensor and the induced voltage from the solenoid is measured by using a digitizer NI PCI-5114 (National Instrument). A force gauge is used to record the static deflection of diaphragm and magnet. The pressure in the chamber is measured by a pressure sensor. The experimental results are compared with the FEM analysis.
其他識別: U0005-2108200911110300
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.