Please use this identifier to cite or link to this item:
標題: 以噴墨系統噴印UV固化膠微透鏡及導光板微結構之探討
Fabrication of UV-resin Microlens by Inkjet Printing and Its Application to Microstructure Arrays of Light-guiding Plates
作者: 黃洪濱
Huang, Hung-Ping
關鍵字: micro lens;微透鏡;light-guide plate;piezoelectric;UV adhesive;導光板;壓電式;UV 固化膠
出版社: 精密工程學系所
引用: [1] 殷孟雲,“噴墨印表機設計原理(修定版),”全華科技圖書股份有限公司, 2005. [2] 程偉倫, “以準分子雷射托拉法製做 3D 微結構之研究,” 國立中興大學機械所, 2001. [3] 廖偉辰, “牛頓流體與非牛頓流體液滴碰撞之研究,”國立中正大學化學工程研究所碩士論文, 2003. [4] 蔡銘煌, “液滴撞擊半圓形液膜之現象觀察與研究,” 國立台灣大學機械工程學研究所碩士論文, 2003. [5] 陳興華, “LCD 背光模組導光板成型模具精密蝕刻加工技術,”工業材料雜誌, 207期.pp. 96-104, 2004. [6] 吳貞欽,姜智豪,涂俊宇,王立群,張家華, “LIGA製程在導光板模具製作之應用,” 模具技術與論文發表會論文集, pp. 95-99, 2003. [7] 賴志良, ”導光板模具之微溝加工” 模具技術資訊, 101期, pp. 9-11, 2003. [8] 劉繼芳, “現代光學,” 新文京開發出板社股份有限公司, 初板, 2006. [9] 張自恭, 林奇鋒, 方育斌, ”背光模組光學設計,” 光連:光電產業技術與技術情報, 49 期, pp. 39-47, 2004. [10] 李祠澐,“液態油品撞擊高溫表面之高速影像分析研究,”崑山科技大學機械工程學系研究所碩士論文, 2006. [11] 甘惠君,王文生,黃文奎,陳方中, “利用自組裝微小透鏡陣列增加有機發光二極體的光耦合效率,” Taiwan display conference, 2006. [12] 方育斌, “LCD 背光模組之光學最佳化設計,” 國立成功大學工程科學系碩士論文, 2004. [13] M. Pasandideh-Fard, Y. M. Qiao, S. Chandra, and J. Mostaghimi, “Capillary effects during droplet impact on a solid surface,” Phys. Fluids, Vol. 8(3), pp. 650-659, 1996. [14] L. Leger, and J. F. Joanny, “Liquid spreading,” Rep. Prog. Phys. , pp.431-486, 1992. [15]J. Fukai, and Z. Zhao, and D. Poulikakos, and C. M. Megaridis, and O. Miyatake, “Modeling of the deformation of a liquid droplet impinging upon a flat surface,” Phys. Fluids A, Vol. 5 (11), pp. 2588-2599, 1993. [16] X. Zhang, and O. A. Basaran, “Dynamic surface tension effects in impact of a drop with a solid surface,” J. Colloid Interface Sci. , Vol. 187, pp. 166-178, 1997. [17] C. Pozrikdis, “The Deformation of a liquid drop moving normal to a plane wall,” J. Fluid Mech. , Vol. 215, pp. 331-363, 1990. [18] M. Marengo, and C. Tropea, “Analysis of impact of droplets on horizontal surfaces,” Exp. Fluids, Vol. 25, pp. 503-510, 2002. [19] B. L. Scheller, and D. W. Bousfield, “Newtonian drop impact with a solid surface,” AIChE Journal, Vol. 41, No. 6, pp. 1357-1367, 1995. [20] C. A. Miller, and P. Neogi, “Interfacial phenomena--equilibrium and dynamic efects,” Surfactant Science Series, Vol. 17, 1985. [21] J. Fukai, Y. Shiiba, T. Yamamoto and O. Miyatake, “Wetting effects on the spreading of a liquid droplet colliding with a flat surface experiment and modeling,” Physics of Fluids, Vol. 7, No. 2, pp. 236-247, 1995. [22] M. Rein, “Phenomena of liquid droplet impact on solid and liquid surfaces,” Fluid Dynamics Research, Vol. 12, pp. 61-93, 1993. [23] T. Mao, and D. C. S. Kuhn, and H. Tran, “Spread and rebound of liquid droplets upon impact on flat surfaces,” AIChE Journal, Vol. 43(9), pp. 2169-2179, 1997. [24] Y. Gu, and D. Li, “Liquid drop spreading on solid surfaces at low impact speeds,” colloids and surfaces A: Physicochemical and Engineering Aspects, Vol. 163, pp. 239-245, 2000. [25] H. Fujimoto, T. Ogino, H. Takuda, and N. Hatta, “Collision of a droplet with a hemispherical static droplet on a solid,” Int. J. Multiphase Flow, Vol. 27, pp. 1227-1245, 2001. [26] A.Asai, “Three-dimension calculation of bubble growth and drop ejection in bubble jet printer,” Journal of Fluids Engineering, Vol. 114, pp. 638-641, 1992. [27] C.A Bruce, “Dependence of inkjet dynamics on fluid characteristics ”, IBM Journal of Research and Development, Vol. 20, pp. 258-270, 1976. [28] N. Budgayci, D. B. Bogy and F. E. Talke, “Axisymmetric motion of radially polarized piezoelectric cylinders used in ink-jet printing,” IBM Journal of Research and Development, Vol. 27 (2), pp. 171-180, 1983. [29] Z. D. Popovic, Rrbort A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. , Vol. 27, No.7, pp. 1281-1297, 1988. [30] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens array,” IEEE Photonic Technology Letters, Vol. 6, No.9, pp. 1112-1114, 1994. [31] W. Daschner, P. Long, and R. Stein, “General aspheric refractive micro-optics fabricated by optical lithography using a high energy beam sensitive glass gray-level mask”, J. Vac. Sci. Technol. B. , Vol. 14, No. 6, pp. 3730-3733, 1996. [32] S. Lazare, J. Lopez, J. M. Turlet, M. Kufner, S. Kufner, and P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly (methyl methacrylate) followed by styrene diffusion”, Appl. Opt. , Vol. 35, no.22, pp. 4471-4475, 1996. [33] M. Frank, M. Kufner, S. Kufner, and M. Testorf, “Microlenses in polymethyl methacrylate with high relative aperture,” Appl. Opt. , Vol. 30, No.19, pp. 2666-2667, 1991. [34] N. F. Borrlli, D. L. Morse, R. H. Bellman, and W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. , Vol. 24, No. 16, pp. 2520-2525, 1985. [35] S. Zlolkowski, “Contactless embossing of microlenses a parameter study,” Opt. Eng. , Vol. 42, No. 5, pp. 1451-1455, 2003. [36] C. S. Lee, C. H. Han, “A novel refractive sillcon microlens array using bulk micromachining technology,” Sensors and Acturators A. , Vol. 88, pp. 87-90, 2001. [37] K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. , Vol. 96-98, pp. 425-429, 1996. [38] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct writing of microlenses In polycarbonate with excimer laser ablation,” Appl. Opt. Vol. 42, No.31, pp. 6349-6359, 2003. [39] K. Naessens, Heidi Ottevaere, P. Van Daele, R. Beats, “Flexible fabrication of microlenses in polymer layers with excimer laser ablation,” Appl. Surf. , Vol. 208-209, pp. 159-164, 2003. [40] Ph.Nussbaum et al.,“Design, fabrication and testing of microlens arrays for sensors and microsystems,” Ure Appl. Opt. , Vol. 6,pp. 617-636, 1997.
本論文主要利用Microfab壓電式噴墨系統噴印UV 固化膠於光學級 PC及玻璃基板 (substrate) 上。利用噴印技術及膠體表面張力 (surface tension) 的物理特性來製作微透鏡陣列並應用於導光板微結構,達到抑制全反射,增加正向出光效率及均齊度。透過控製噴印液滴數、基板溫度及 UV 硬化膠黏度(10cp及20cp)可改變透鏡粒徑大小及成型厚度。以噴嘴 (nozzle) 50um噴印微透鏡,最小粒徑小於95um。此技術應用於導光板上可依需求噴印不同粒徑、厚度及間距之微透鏡陣列 (micro lens array) 以達導光板所需之最佳效果。實驗中噴印UV 固化膠微透鏡導光板樣品所得之最佳正面出光效率比較於未噴印前增加75%,實驗結果證明正面出光效率與微透鏡粒徑、厚度及填充率(fill factor)成正比。依近光源處微透鏡填充率較低作區塊劃分噴印微透鏡結構於導光板上其均齊度可達82%以上。

This paper mainly uses a Microfab-Inkjet piezoelectric ink-jet system to print UV adhesives on optical-grade PC and glass substrates. The physical characteristics of ink-jet technology and adhesive surface tension were used to manufacture micro lens arrays and applied to the microstructure of light-guide plates to achieve attenuated total reflection (ATR) inhibition and increase the positive light efficiency and uniformity. Through controlling the ink-jet liquid drop amount, the substrate temperature, and the UV adhesive viscosity (10cp and 20cp), the lens particle diameter size and formation height can be changed. The micro lens is printed with a 50um nozzle and a minimum diameter less than 95um. This technology is applied to light-guide plates and can achieve optimal effects by ink-jet printing micro lens arrays with different particle diameters, height, and spacing as demanded. The optimal positive light efficiency obtained by the experiment ink-jet UV adhesive micro lens light-guide plate sample was 75% greater than before ink-jet printing. The experiment results prove that there is a positive correlation between positive light efficiency and micro lens particle diameter, height, and fill factor. The uniformity of ink-jet micro lens structures on light-guide plates can reach over 82% with area divisions based on the lower fill-rate of the micro lenses near the light source.
其他識別: U0005-3107200914480600
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.