Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4239
標題: 雷射退火在軟性染料敏化太陽能電池上的探討
Investigation of Laser-Sintered TiO2 for Dye Sensitized Solar Cell on Flexible Substrate
作者: 林鼎御
Lin, Ding-Yu
關鍵字: DSSC;染料敏化太陽能電池;transparent conductive film;laser annealing;透明導電膜;雷射退火
出版社: 精密工程學系所
引用: 1. 郭禮青. 國內太陽光電發展可期. 工業材料, 137-142 (2003) 。 2. 莊嘉琛,太陽能工程-太陽能電池篇,全華,第一章、第二章、第四章,1997。 3. 萬海堡;席時權. 染料敏化的TiO2 奈米多孔膜的性質及其光電轉換. 化學通報 6 (1996). 4. Tsubomura, H. M., M.; Nomura, Y.; Amamiya, T. Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell. Nature 261, 402(1976). 5. Gratzel, M. O. R., B. A low-cost, high-efficiency solar cell basedon dye-sensitized colloidal TiO2 films. Nature 353, 737-740(1991). 6. Nazeeruddin, M. K. K., A.; Rodicio, I.; Humphry-Baker, R.; Muller,E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. Coversion of light toelectricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc 115, 6382-6390(1993). 7. Hara, K. H., T; Kinoshita, T; Sayama, K; Sugihara, H; Arakawa, H,.Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solarcells. Sol. Energy Mater. Sol. Cells 64, 115-134 (2000). 8. Kawashima, T. E., T.; Okada, K.; Matsui, H.; Goto, K.; Tanabe, N.FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem 164,199-202 (2004). 9. Kawashima, T. M., H.; Tanabe, N. New transparent conductive films: FTO coated ITO. Thin Solid Films 44, 241-244 (2003). 10. Ito, S. T., T.; Katayama, T.; Sugiyama, M.; Matsuda, M.; Kitamura,T.; Wada, Y.; Yanagida, S. Conductive and transparent multilayerfilms for low-temperature-sintered mesoporous TiO2 electrodes ofdye-sensitized solar cells. Chem. Mat. 15, 2824-2828 (2003). 11. Lindstrom, H. H., A.; Magnusson, E.; Lindquist, S.-E.; Malmqvist,L.; Hagfeldt, A. A New Method for Manufacturing NanostructuredElectrodes on Plastic Substrates. Nano.Lett 1, 97-100 (2001). 12. Longo, C. N., A. F.; De Paoli, M.-A.; Cachet, H.Solid-State andFlexible Dye-Sensitized TiO2 Solar Cells: a Study by Electrochemical Impedance Spectroscopy. J. Phys. Chem. B 106,5925-5930 (2002). 13. Gutierrez-Tauste, D. Z., I.; Vigil, E.; Hernandez-Fenollosa, M. A. New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. J.Photochem. Photobiol. A-Chem 175, 165-171 (2005). 14. J. Nelson, “Solar Cells by Self-Assembly,” Science Vol. 293 10 August 2001. 15. B. Y. Wei, H. M. Lin, C. C. Kao, A. K. Li, “Effect of Calcination on Photocatalytic 16. Song, M. Y. K., D. K.; Jo, S. M.; Kim, D. Y. Enhancement of thephotocurrent generation in dye-sensitized solar cell based onelectrospun TiO2 electrode by surface treatment. Synth. Met 155,635-638 (2005). 17 Hara, K. D.-o., Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.;Sayama, K.; Arakawa, H. Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells. Langmuir 20, 4205-4210 (2004). 18 Hara, K. T., Y.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K. Dye-sensitized nanocrystalline TiO2 solar cells based on novelcoumarin dyes. Sol. Energy Mater. Sol. Cells 77, 89-103 (2003). 19 Stergiopoulos, T. A., I.; Kalbac, M; Lukes, I; Falaras, P,. Incorporation of innovative compounds in nanostructured87 photoelectrochemical cells. J. Mater. Process. Technol 161, 107-112 (2005). 20 Perera, V. P. S. P., P. K. D. D. P.; Senevirathne, M. K. I.; Tennakone,K. A solar cell sensitized with three different dyes. Sol. Energy Mater. Sol. Cells 85, 91-98 (2005). 21 Bandara, J. W., H. Design of high-efficiency solid-state dye-sensitized solar cells using coupled dye mixtures. Sol. Energy Mater. Sol. Cells 90, 864-871 (2006). 22 Otaka, H. K., M.; Yano, K.; Ito, S.; Mitekura, H.; Kawata, T.Multi-colored dye-sensitized solar cells. J. Photochem. Photobiol.A-Chem 164, 67-73 (2004). 23 Hara, K. S., H; Singh, L. P; Islam, A; Katoh, R; Yanagida, M. NewRu(II) phenanthroline complex photosensitizers having differentnumber of carboxyl groups for dye-sensitized solar cells. J.Photochem. Photobiol. A-Chem 145, 117-122 (2001). 24 Huber, R. M., J. E.; Gratzel, M; Wachtveitl, J. Observation ofphotoinduced electron transfer in dye/semiconductor colloidalsystems with different coupling strengths. Chem. Mat. 285, 39-45(2002). 25 U. Bach, D. L., P. Comte, J. E. Moser, J. Salbeck, H. Spreitzer, M.Gratzel,. Solid-state dye-sensitized mesoporous TiO2 solar cellswith high photon-to-electron conversion efficiencies. Nature 395,583-585 (1998). 26 Wendy U. Huynh, J. J. D., A. Paul Alivisatos,. Hybrid Nanorod-Polymer Solar Cells. Science 295, 2425-2427 (2002). 27 Gebeyehu, D. B., C.J.; Sariciftci, N.S.; Vangeneugden, D.; Kiebooms, R.; Vanderzande, D,. Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synth. Met 125, 279-287 (2002). 28 Takenobu, T. M., T.; Iwasa, Y.; Mitani, T.,. Mott-Hubbard transition in alkali ammonia fullerides. Synth. Met 121, 1573-1574 (2001).29 Kumara, G. R. A. K., S.; Okuya, M.; Tennakone, K.,. Fabrication ofDye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanateas a CuI Crystal Growth Inhibitor. Langmuir 18, 10493-10495(2002). 30 Meng, Q.-B. T., K.; Zhang, X.-T.; Sutanto, I.; Rao, T. N.; Sato, O.;Fujishima, A.; Watanabe, H.; Nakamori, T.; Uragami, M.Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir 19, 3572-3574 (2003). 31 O''Regan, B. S., D. T.,. Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL''NCS/CuSCN: Initiation and Potential Mechanisms. Chem. Mat. 10, 1501-1509 (1998). 32 Kumara, G. R. R. A. K., A.; Senadeera, G.K.R.; Jayaweera, P.V.V.;De Silva, D.B.R.A.; Tennakone, K.,. Dye-sensitized solar cell withthe hole collector p-CuSCN deposited from a solution in n-propylsulphide. Sol. Energy Mater. Sol. Cells 69, 195-199 (2001). 33 Kalyanasundaram, K. G., M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices.Coord. Chem. Rev 77, 347-414 (1998). 34 Xiaoming.F; Tingli.M; Guoqing.G; Morito.A; Tetsya.K; Eiichi.A.Effect of the thickness of the Pt film coated on a counter electrodeon the performance of a dye-sensitized solar cell. J. Electroanal. Chem 570, 257-263 (2004). 35 Cahen, D. H., G.; Gratzel, M.; Guillemoles, J. F.; Riess, I.,. Natureof Photovoltaic Action in Dye-Sensitized Solar Cells. J. Phys. Chem. B 104, 2053-2059 (2000). 36 Zaban, A. F., S.; Gregg, B. A.,. Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface. J. Phys.Chem. B 102, 452-460 (1998). 37 http://www.nchu.edu.tw/~rict/sem/SEM-prin.htm,中興大學研發處-貴重儀器中心-FE-SEM
摘要: 
本研究以兩部分為主軸,一部分為傳統染料敏化太陽能電池(DSSC)試是用玻璃基板來製作,而本研究以玻璃基板和PET膜作為基板,另一部分是玻璃基板可以使用高溫來進行退火的動作,但是PET膜卻不行,為了改善PET膜無法承受高溫的缺點,選擇使用雷射來使其達到我們所要的結晶相。針對研究方向所使用的分析儀器有膜厚測量機(α-step)、X光繞射分析儀、掃描式電子顯微鏡,而DSSC元件的I-V參數則使用半導體參數分析儀來做量測。
本實驗已成功的在玻璃基板和PET膜上製作染料敏化太陽能電池,但效率仍然偏低,未來應尋求材料與製成的最佳組合,才能將DSSC發揮到最好的狀態

There are two topics in this research, one is the traditional DSSC that is made of glass substrate, and we use glass substrate and pet film as the substrate, another the glass substrate can be annealed by high temperature ,but PET film can't. We select to use laser method to get crystal phase to improve the PET film that can't endure high temperature. In this research, we use the instrument there are (α-step) ,XRD,SEM, and we use semiconductor parameter analysis instrument to measure the I-V parameter of DSSC device.
In this experiment, we can fabricate DSSC on glass substrate and PET film, but the efficiency still low .In the future, we should find the best combination between materials and processes, so that we can develop the DSSC to best efficiency.
URI: http://hdl.handle.net/11455/4239
其他識別: U0005-3108200916064200
Appears in Collections:精密工程研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.