Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLin, Ge-Nianen_US
dc.identifier.citation1.G. T. A. Kavacs, N. I. Maluf, and K.E.Peterson, “Bulk Micromachining of Silicon, ” Proceedings of the IEEE, Vol.86, pp. 1536-1551,1998. 2.W. L., “Silicon microstructuring technology,” Materials Science and Engineering,R-reports, Vol.17, NO.1, pp1-55, 1996. 3.G. T. A. Kavacs, K. Peterson, M. Albin, “Silicon Micromachining Sensors to Systems,” Analytical Chemistry News & Features, pp.407-412, 1996. 4. K. E. Peterson, “Dynamic Micromechanics on Silicon: Techniques and Devices,” IEEE Transactions on Electron devices, Vol 25, No.10, pp.1241-1250, 1978. 5. A. Oz, and G. K. Fedder, “Surface micromachining for microsensors and microactuators,” Journal of Vacuum Science Technology B, no.6, pp.1809-1813, 1988. 7.E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and Muenchmeyer, D., “Fabrication of microstructures with high aspect ratio and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA processes)," Microelectronic Engineering, vol. 4, pp. 35-56, 1986. 8. B. Schwartz and H. R. Robbins., “Chemical etching of silicon-IV. Etching technology. ” J. Electrochem. Soc. Vol. 123, No. 12, pp. 1903-1909, 1976. 9. A. F. Bogenschutz, W. Krusemark, K.H. Locherer, and W. Mussinger. “Activation energies in the chemical etching if semiconductors in HNO3-HF-CH3COOH. ” J. Electrochem. Soc. Solid State, Vol. 114, No. 9, pp. 970-973, 1997. 10. J. A. Chediak, Z. Luoa, J. Seo, N. Cheungc, L. P. Lee and T. D. Sandse, “Heterogeneous Integration of CdS Filters with GaN LEDs for Fluorescence Detection Microsystems, ” Sensors and Actuators A, vol.111, no.1, pp. 1-7, 2004. 11. J.H. Lee, S.R. Park, S.H. Yang, Y.S. Kim, “Fabrication of a V-groove on the optical fiber connector using a miniaturized machine tool,” Journal of Materials Processing Technology, vol. 155, pp. 1716–1722, 2004. 12. I. F. Cuestaa, R. B. Nielsen, Al. Boltasseva, X. Borrisé, and F. P. Murano, “ V-groove plasmonic waveguides fabricated by nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 25, no. 6, pp. 2649-2653, 2007. 13. X. Yu, B. Zhang, J. Guo, H. Yang, Y. Zhang, and S. Shen, “Fabrication of continuous V-grooves with Si(110) sidewalls using TiO2 resist mask by anisotropic wet etching,” J. Micro/Nanolith. MEMS MOEMS, vol. 8, no. 1, pp. 0130121-0130125, 2009. 14.K. Arimoto, G. Kawaguchi, K. Shimizu, M. Watanabe, J. Yamanaka, K. Nakagawa, N. kaUsami, K. Nakajima, K. Sawano, Y. Shiraki, “Structural and transport properties of strained SiGe grown on V-groove patterned Si(110) substrates,” Journal of Crystal Growth, vol. 311, pp. 814-818, 2009. 15. M. Madou, ”Fundamentals of Microfabrication,” CRC Press LLC, 1997. 16. D. Zielke, J. Fruhaüf, ”Determination of Rates for Orientation-Dependent Etching,” Sensors and Actuators, vol. 48, pp. 51-156, 1995. 17. K Tokoro, D Uchikawa, M Shikida, K Sato., “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions,” IEEE International Symposium on Micromechatronics and Human Science, pp. 65-69, 1998. 18. G. Ensell, “Alignment of Mask Patterns to Crystal Orientation, “Sensors and Actuators, ” A, vol.53, pp. 345-348, 1996. 19.黃淳權,微機電概論,高立圖書有限公司,2000。 20.莊達人,VLSI 製造技術,高立圖書出版,2001。 21.W. K. Choi, J. T. L. Luo, P. Tan, C. M. Chua, T. H. and Y. Bai, "Characterisation of Pyramid Formation Arising from the TMAH Etching of Silicon," Sensors and Actuators A, 71, pp. 238-243, 1998. 22. S. S. Tan, M. L. Reed, H. Han and R. Boudreau, "Mechanisms of Etch Hillock Formation," Journal of Microelectromechanical Systems, vol. 5, no.1, pp. 66-72, 1996. 23. 國科會精儀中心,微機電系統技術與應用,2003。 24. T. A. Kovacs, N. I. Maluf and K. E. Peretsen, "Bulk Micromachining of Silicon," Proceedings of The IEEE, vol. 86, no. 8, pp. 1536-1551, 1998. 25.J.B.Price,”Anisotropic of Silicon with KOH-H2O-IPA,” in Semiconductor Silicon, ed. H. R. Burgess, N. J. Princeton, Electrochemical Socety Proceedings, pp. 339, 1973. 26. citation:Ghandhi, “VLSI Fabrication Principles,” p. 461 27. 李宗哲, 光纖式微型生醫檢測之螢光激發平台研究,國立中興大學精密工程所碩士論文, 2005 28. 陳建州, 非等向性蝕刻製程於矽基板之應用:翻鑄模仁與矽基板 V 型凹槽,國立中山大學機械工程研究所碩士論文 , 2001 29. 王群智, 使用動態光罩微影技術於單層製作3D微小元件之研究,國立台灣科技大學機械工程研究所碩士論文,2005 [30] 誠品光電
dc.description.abstractThe purpose of this study is to develop multi-channel molds for optical fiber alignment with high precision. High selective wet-etching process to fabricate multi-channel grooves for fiber alignment on Si(100) was used. It has the potential advantage to replace the conventional grinding process for v-groove production. The (100)-oriented Si wafers were used as starting substrates and then epitaxied with silicon dioxide or silicon nitride. Furthermore, samples were patterned (using photoresist), which the protected region was silicon dioxide or silicon nitride while the v-groove can be formed in the unprotected region after removal of passivation layer and KOH etching. Silicon anisotropic etching can result the desired V-grooves in silicon.Optimal etching conditions, including the etchant concentration, temperature and time can determine the etching rate and etching depth for V-groove producing micro-structures. The number of fiber channel can be defined from the mask design. Fiber channels of 32 will be the final research target. That can convert into metal molds by electroforming process, decrease the error rate under 0.3%. The implementation of a large number of multi-channel optical fiber positioning replication modules, with high precision, to reduce costs and demand for optical communication industry will be feasible.en_US
dc.description.tableofcontents致謝. 摘要 I Abstract II 目次 III 圖目次 VI 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2 MEMS 製程 1 1.2.1 面型微加工 (Surface micro-machining) 2 1.2.2 體型微加工 (Bulk Micro-machining) 3 1.2.3 LIGA 製程 3 1.2.4 LIGA-Like製程 5 1.3 研究動機 6 1.4 研究方法與目標 8 1.5文獻回顧 9 1.5.1 製作光纖模仁定位塊之方法 9 1.5.2 濕式蝕刻速率 15 1.6論文架構 16 第二章 基礎理論 17 2.1體型矽微加工技術 (Bulk Micromachining) 17 2.1.1濕式蝕刻機制 18 2.1.2單晶矽非等向性濕式蝕刻 20 2.2蝕刻液之選擇與保護層之成長 24 2.2.1 二氧化矽(SiO2)成長的方法 25 2.3保護層之去除 26 2.3.1 Buffer Oxide Etch(BOE)蝕刻二氧化矽 26 2.3.2感應式電漿蝕刻機ICP-RIE(Reactive Ion Etch)乾式蝕刻 27 2.4 矽之蝕刻 27 第三章 實驗方法與規劃 29 3.1實驗流程 29 3.2 V-groove 製程 29 3.2.1 光罩設計 29 3.3 實驗步驟 31 3.3.1 製程前處理 31 3.3.2 微影製程 32 3.3.3 蝕刻製程 37氧化層蝕刻率量測 37 氮化矽蝕刻率量測 42 3.4多通道V型槽製作 45 第四章 實驗結果與分析 47 4.1 光纖通道間距250μm濕式蝕刻結果與討論 47 4.2 光纖通道間距127μm蝕刻結果與討論 51 4.2.1利用BOE 蝕刻保護層 51 4.2.2利用ICP-RIE 蝕刻保護層 52 4.3探討電鑄翻模後尺寸誤差值 60 4.3.1 光纖通道間距250μm電鑄翻模後尺寸誤差值 60 4.3.2光纖通道間距127μm電鑄翻模後尺寸誤差值 62 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 66 參考文獻 67 附錄A 二氧化矽蝕刻速率與厚度量測圖 70 附錄B 氮化矽蝕刻速率與厚度量測圖 72zh_TW
dc.subjectanisotropic etchen_US
dc.subjectFiber arrayen_US
dc.titleProcess development of high precision multiple -channel optical fibers in parallel alignment mold insertsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:精密工程研究所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.