Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorShen, Jun-Hongen_US
dc.identifier.citation[1] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors” Appl. Phys. Lett., Vol. 82, 733 (2003). [2] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M.F. Goncalves, A. J. S. Marques, R. F. P. Martins, and L. M. N. Pereira, “Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature” Appl. Phys. Lett., Vol. 85, 2541 (2004). [3] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer” Appl. Phys. Lett., Vol. 86, 013503 (2005). [4] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, “Recent advances in ZnO transparent thin film transistors”, Thin Solid Film, Vol. 487, 205 (2005). [5] C. C. Liu, Y. S. Chen, and J. J. Hung, “High-performance ZnO thin-film transistors fabricated at low temperature on glass substrates” Electron. Lett., Vol. 42,14 (2006). [6] J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, and S. Y. Lee, “Characteristics of transparent ZnO based thin film transistors with amorphous HfO2 gate insulators and Ga doped ZnO electrodes” Thin Solid Films, Vol.516, 1529 (2008). [7] R. Navamathavan, C. K. Choi, E. J. Yang, J. H. Lim, D. K. Hwang, and S. J. Park, “Fabrication and characterizations of ZnO thin film transistors prepared by using radio frequency magnetron sputtering” Solid-State Electron., Vol.52, 813 (2008). [8] J. Sun, T. Yang, G. Du, H. Liang, J. Bian, and L. Hu, “Influence of annealing atmosphere on ZnO thin films grown by MOCVD” Appl. Surf. Scien., Vol. 253, 2066 (2006). [9] J. Jo, O. Seo, H. Choi, and B. Lee, “Enhancement-mode ZnO thin-film transistor grown by metalorganic chemical vapor deposition” Appl. Phys. Express, Vol. 1, 041202 (2008). [10] Donald A. Neamen, “Semiconductor Physics & Devices, 3rd ed.” McGraw Hill, 2003. [11] S. W. Kim, S. Fujita, and S. Fujita, “Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 81, 5036 (2002). [12] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition”, Appl. Phys. Lett., Vol. 83, 1635 (2003). [13] C. H. Chia, T. Makino, K. Tamura, Y. Segawa, A. Ohtomo, and H. Koinuma, “Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells”, Appl. Phys. Lett., Vol. 82, 1848 (2003). [14] J. Nishi, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, and M. Kawasaki, “High mobility thin film transistors with transparent ZnO channels” Jpn. J. Appl. Phys., Vol. 42, 347 (2003). [15] S. Masuda, K. Kitamura, Y. Okumura, and S. Miyatake, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties” J. Appl. Phys., Vol 93, 1624 (2003). [16] R. L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility” J. Appl. Phys., Vol. 95, 5813 (2004). [17] S. J. Lim, S. Kwon, H. Kim, and J. Park, “High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO” Appl. Phys. Lett., Vol. 91, 18357 (2007). [18] J. H. Chung, J. Y. Lee, H. S. Kim, N. W. Jang, and J. H. Kim, “Effect of thickness of ZnO active layer on ZnO-TFT's characteristics” Thin Solid Film, Vol. 516, 5597 (2008). [19] L. Zhang, H. Zhang, Y. Bai, J. W. Ma, J. Cao, X. Jiang, and Z. L. Zhang, “Enhanced performances of ZnO-TFT by improving surface properties of channel layer” Solid State Commu., Vol. 146, 387 (2008). [20] D. C. Look, J. W . Hemsky, and J. R. Sizelove, “Residual Native shallow Donor in ZnO” Phys. Rev. Lett., Vol. 82, 255 (1999). [21] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors” Nature, Vol. 432, 488 (2004). [22] D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for native-defect donors in n-type ZnO” Phys. Rev. Lett,, Vol. 95, 225502 (2005). [23] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner “Recent advances in processing of ZnO” J. Vac. Sci Technol. B, Vol. 22, 932 (2004).zh_TW
dc.description.abstract我們利用有機金屬化學氣相沉積來沉積氧化鋅薄膜,並加以改善以達到可以利用在薄膜電晶體的水準。在本論文的第一部份先進行沉積溫度對氧化鋅結構之研究,實驗結果可以發現在300℃溫度下沉積可以使氧化鋅形成薄膜結構。一般利用有機金屬化學氣相沉積製備的氧化鋅薄膜載子濃度約為8×1018cm-3,並不足以達到可利用在電晶體通道層的水準,因此本論文第二部份是利用氧氣對氧化鋅薄膜進行高溫熱退火改善載子濃度之研究,結果可以發現氧化鋅薄膜因薄膜內部氧處理不足,導致載子濃度至多改善為9×1017cm-3,不甚理想。論文第三部份為改變退火方式為沉積過程逐步退火,結果可以發現在沉積過程中逐步退火在500℃的溫度下退火所得之氧化鋅薄膜,有效的大幅降低載子濃度為2.7×1015cm-3,此載子濃度足以當電晶體通道層之數量級。最後利用此一參數製作出薄膜電晶體,由電晶體的特性曲線表現,可得開關電流比為1.61×106,場效載子移動率為22 cm2/Vs。zh_TW
dc.description.abstractIn this thesis, ZnO thin films were prepared using a metalorganic chemical vapor deposition (MOCVD) system. In order to achieve ZnO with a lower carrier concentration for thin-film transistor (TFT) applications, the ZnO thin films are processed by various post-thermal treatment methods. First, the effects of deposition temperature of ZnO thin film were investigated. It was found that the ZnO with thin film structure could be obtained at a deposition temperature of 300℃. Generally, the carrier concentration of ZnO thin film prepared by MOCVD is 8×1018cm-3 and can not meet the requirement for TFTs. Thus, the ZnO thin films are treated with high temperature thermal annealing in oxygen ambient. However, the carrier concentration of ZnO can only be improved to 9×1017cm-3 and is not good enough due to insufficient of oxygen in ZnO. Finally, the carrier concentration of ZnO thin film was improved by using a multi-step annealing process. The carrier concentration of ZnO could be improved greatly to 2.7×1015cm-3 using the multi-step annealing at 500℃. This contributes the ZnO carrier concentration good enough to be used as channel layer in TFT. Finally, the ZnO TFT with Ion/Ioff ratio of 1.6×106 and field effect mobility of 22 cm2/Vs could be obtained under the optimized process conditions.en_US
dc.description.tableofcontents封面內頁 簽名頁 授權書 誌謝 i 中文摘要 ii Abstract iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1-1背景簡介 1 1-2研究動機 2 1-3論文架構 3 第二章 理論基礎與文獻回顧 4 2-1金屬-氧化物-半導體場效電晶體 4 2-2氧化鋅晶體結構與特性 14 2-3氧化銦錫晶體結構及特性 16 第三章 實驗方法與步驟 18 3-1實驗流程 18 3-2實驗設備 21 3-3分析儀器原理及設備 22 第四章 實驗結果與討論 29 4-1沉積溫度對氧化鋅薄膜結構與特性之影響 29 4-2沉積時氧濃度對氧化鋅薄膜及電晶體特性之影響 32 4-3氧氣氛下高溫後處理對氧化鋅薄膜特性之影響 36 4-4沉積過程中逐步退火對氧化鋅薄膜及電晶體特性之影響 43 第五章 結論與未來展望 54 參 考 文 獻 55zh_TW
dc.subjectfield effect mobilityen_US
dc.titleCharacterization of enhancement-mode ZnO thin-film transistors using metalorganic chemical vapor depositionen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:精密工程研究所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.