Please use this identifier to cite or link to this item:
標題: 以化學蝕刻剝離技術進行具金屬基板之薄膜型氮化鎵發光二極體轉移基板之研製
Investigation of Transferring the Thin Film GaN LED Epi-structure to Metal Substrates by Chemical Lift-off Technology
作者: 顏呈穎
Yen, Cheng-Ying
關鍵字: GaN;氮化鎵;Light emitting diode(LED);sacrificial layer;chemical lift-off(CLO);metal substrate;發光二極體;犧牲層;化學蝕刻剝離;金屬基板
出版社: 精密工程學系所
引用: 參考文獻 1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. vol. 64, 1687 (1994). 2. T. C. Wen, S. J. Chang, L. W. Wu, Y.K. Su, W.C. Lai, C.H. Kuo, C.H. Chen, J.K. Sheu, and J.F. Chen, “InGaN/GaN Tunnel-Injection Blue Light-Emitting Diodes,” Electron Devices, IEEE Transactions 49,1093 (2002). 3. S. Nakamura and G. Fasol, The Blue Laser Diodes The Complete Story. Berlin, Springer (1997). 4. T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-based light-emitting diodes operable at high ambient temperatures,” Jpn. J. Appl. Phys. Part 2 vol. 37, L479 (1998). 5. A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York: Wiley and Sons (2002). 6. S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN P-N Junction blue-light-emitting diodes,” Jpn. J. Appl. Phys. vol. 30, 1998 (1991). 7. H.Sugawara, and M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” App. Phys. Lett. vol. 58, 1010 (1991). 8. H. Sugawara, K. ltaya, H. Nozaki, G. Hatakoshi, “High-brightness InGaAlP green light-emitting diodes,” App. Phys. Lett. vol. 61, 1775 (1993). 9. D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE. vol. 85, 1752 (1997). 10. A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting. New York, Wiley (2002). 11. S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Laser Diode and Light Emitting Diodes. London, Taylor and Francis (2000). 12. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers. Berlin, Springer (1997). 13. 史光國“半導體發光二極體及固態照明”全華科技圖書股份有限公司, 台灣 14. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O''Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, Volume 78, Issue 22, pp.3379-3381, May 28 (2001). 15. M. Koike, N. Shibata, H. Kato, Y. Takahashi “Development of high efficiency GaN-based multiquantum-welllight-emitting diodes and their applications,” IEEE, vol. 8, no2, pp. 271-277 (2002). 16. C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu, J. F. Chen, “High-efficiency InGaN-GaN MQW green light-emitting diodes with CARTand DBR structures,” IEEE Journal of Selected Topics in Quantum Electronics. Vol. 8, no. 2, pp. 284-288. Mar.-Apr. (2002). 17. C. C, Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, “Improved light-output power of GaN-LEDs by selective region activation,” IEEE Photonics Technology Letters. Vol. 16, no. 6, pp. 1444-1446 (2004). 18. T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. Denbaars, S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,”Applied Physics Letters, Volume 84, Issue 6, pp. 855-857 (2004). 19. C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughtening of the p-GaN surface,”JApp. Phys.,vol 93, pp. 9383-9385, June (2003). 20. C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “ Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughtening of the p-GaN surface,”JApp. Phys.,vol 93, pp. 383-9385, June (2003). 21. Y. K. Su, S. J. Chang, C.H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai, and J. M. Tsai, IEEE Sensors J.2, 366 (2002). 22. H. Kim, K. K. Kim, K. K. Choi, H. K., J. O. Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry”, APPLIED PHYSICS LETTERS 91, 023510 (2007) 23. C. Fu. Chu, C. C. Yu, H. C. Ceng, C.F. Lin and S. C. Wang, “Comparison of p-Side Down and p-Side Up GaN Light-Emitting Diodes Fabricated by Laser Lift-Off” Jpn. J. Appl. Phys. Vol. 42, pp. L 147–L 150 (2003). 24. W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-Power GaN–Mirror–Cu Light-Emitting Diodes for Vertical Current Injection Using Laser Liftoff and Electroplating Techniques”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 9, (2005). 25. H. Y. Kuo, S. J. Wang, P. R. Wang, K. M. Uang, T. M. Chen and H. Kuan, “A Sn-based metal substrate technology for the fabrication of vertical-structured GaN-based light-emitting diodes”, APPLIED PHYSICS LETTERS 92, 021105 (2008). 26. J. S. Ha, S. W. Lee, H. J. Lee, H. J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, “The Fabrication of Vertical Light-Emitting Diodes Using Chemical Lift-Off Process”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 3 (2008). 27. YEW CHUNG SERMON WU, PEIYAN LIN, “Method for transferring epitaxy layer”, US Pat. US6686257B2 (2002). 28. M. Koike, S. Yazasaki, “Method for producing Group III nitride compound semiconductor”, US Pat. US7112243B2 (2001). 29. HU, EVELYN L, STONAS, ANDREAS R, “Photoelectrochemical undercut etching of semiconductor material”, US Pat. US6884740 (2001). 30. M. Senda, N. Shibata, J. Ito, T. Chiyo, “III group nitride based semiconductor element and method for manufacture thereof”, US Pat. US6875629 (2001). 31. 施敏 原著, 張俊彥 譯著, “半導體元件物理與製程技術,” 第三版,高立圖書有限公司, 台北, 台灣, pp. 192-206 (2000). 32. D. K. Schroder, Semiconductor Material and Device Characterization (1990). 33. V. M. Burmedez, “Study of oxygen chemisorption on the GaN(0001)-(1×1) surface,” J. Appl. Phys., vol. 80, pp. 1190-1200, July (1996). 34. Y. Xi and E. F. Schubert, “Junction–temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Appl. Phys. Lett. vol. 85, 2163 (2004). 35. Y. Xi, J. Q. Xi, Th. Gessmann, J. M. Shah, J. K. Kim, E. F. Schubert, A. J. Fischer, M. H. Crawford, K. H. A. Bogart, and A. A. Allerman, “Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods,” Appl. Phys. Lett. vol. 86, 031907 (2005). 36. LumiLeds, “Thermal Management Considerations for Super Flux LEDs,” Application Note, 1149-4. 37. P. R. Tavemier and D. R. Clarke Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys. vol. 89, 1527 (2001). 38. Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, vol. 36, 281 (2005). 39. M. V. Allmen and A. Blastter, “Laser-Beam Interactions with Materials: Physical Principles and Application”, Berlin, 2nd Springer Publisher (1995). 40. R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum,” Phys. Stat. Sol. (a) vol. 26, 353 (1974). 41. C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, (01 2) Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys. vol. 76, 236 (1994). 42. M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal stability of GaN investigated by low-temperature photoluminescence spectroscopy,” Appl. Phys. Lett. vol. 63, 3625 (1993). 43. W. S. Wong, Y. Cho, N. J. Quitoriano, T. Sands, A. B. Wengrow and N. W. Cheung, “Integration of GaN thin films with dissimilar substrate materials by Pd-In metal bonding and laser lift-off,” J. Electronic Mater. vol. 28, 1409 (1999). 44. S. Nakamura, and G. Fasol, “The blue laser diode”, Springer Berlin, p.15 (1997). 45. P. Gibart, “Metal organic vapour phase epitaxy of GaN and lateral overgrowth”, Rep. Prog. Phys., 67, p.667 (2004). 46. H. S. Cheong, M. K. Yoo, H. G. Kim, “Direct heteroepitaxial lateral overgrowth of GaN on strip-patterned sapphire substrates with very thin SiO2 mask”, Phys. Stat., 241, p.2763 (2004). 47. J. Wang, L. W. Guo, H. Q. Jia, Z. G. Xing, Y. Wang, J.F. Yan, N.S. Yu, H. Chen, J. M. Zhou, “Investigation of characteristics of laterally overgrown GaN on striped sapphire substrates patterned by wet chemical etching”, Journal of Crystal Growth 290, 398-404 (2006). 48. H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes”, APPLIED PHYSICS LETTERS 95, 221110 (2009). 49. J. W. Lee, C. Sone, Y. Park, S.-N. Lee, J.-H. Ryou, R. D. Dupuis, C. -H. Hong, and H. Kim, “High efficiency GaN-based light-emitting diodes fabricated on dielectric mask-embedded structures”, APPLIED PHYSICS LETTERS 95, 011108 (2009). 50. Kazumasa Hiramatsu, Katsuyu Nishiyama, Masaru Onishi, “Fabrication and characterization of low defect density GaN using facet controlled epitaxial lateral overgrowth (FACELO)”, Journal of Crystal Growth 221 316-326 (2000). 51. Akihiko Ishibashi, Isao Kidoguchi, Gaku Sugahera, Yuzaburoh Ban, “High-quality GaN films obtained by air-bridged lateral epitaxial growth”, Journal of Crystal Growth 221 338-344 (2000). 52. J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys. vol. 83, 3172 (1998). 53. J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 74, 1275 (1999). 54. J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, and J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. vol. 86, 4491 (1999). 55. S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett. vol. 78, 3265 (2001). 56. T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett. vol. 74, 3930 (1999). 57. R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN,” Appl. Phys. Lett. vol. 79, 2925 (2001). 58. C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu “High brightness InGaN green LEDs with an ITO on n/sup ++/-SPS upper contact,” IEEE. vol. 50, 2208 (2003). 59. S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts,” IEEE. vol. 15, 646 (2003). 60. J. H. Son, H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN,” Appl. Phys. Lett. vol. 85, 4421 (2004). 61. H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett. vol. 85, 5920 (2004). 62. D. L. Hibbard, S. P. Jung, C. Wang, D. Ullery, Y. S. Zhao, H. P. Lee, W. So and H. Liu, “Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag,” Appl. Phys. Lett. vol. 83, 311 (2003). 63. J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. vol. 88, 043507 (2006). 64. H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H. Kim, S. N. Lee, C. Sone, Y. Park and T. Y. Seong, “High-Reflectance and Thermally Stable AgCu Alloy p-Type Reflectors for GaN-Based Light-Emitting Diodes,” IEEE Photonics Technol. Lett. vol. 19, 336 (2007). 65. V. Adivarahan, A. Lunev, M. A. Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska, “Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices,” Appl. Phys. Lett. vol. 78, 2781 (2001). 66. T. Mukai, M. Yamade, and S. Nakamura, “Current and temperature dependence of electroluminescence of InGaN-based UV/blue/green diodes”, Jpn. J. Appl. Phys., vol. 37, pp.L1358-1361 (1998). 67. S. S. Schad, T, M. Scherer, M. Seyboth, and V. Schwegler, “Extraction efficiency of GaN-based LEDs”, Phys. Stat. Sol. (a), vol. 188, 127 (2001).
我們分別比較未經翻轉製程、雷射剝離技術與化學蝕刻剝離技術製作之氮化鎵磊晶膜的差異,以X光繞射光譜儀驗證其薄膜的差異性,雷射剝離技術與化學蝕刻剝離技術之X光繞射光譜(002)面半高寬分別為310、315及317 arcsec,故可驗證化學蝕刻剝離技術應用於薄膜氮化鎵發光二極體製程之可行性。
元件光電特性方面,電流20 mA注入下,傳統水平結構與雷射剝離技術、化學蝕刻剝離技術製作之垂直導通結構之操作電壓分別為3.15 V、2.37 V與2.21 V。當大電流350 mA注入下,發光強度分別為1281.0 mcd、1909.3 mcd及1826.3 mcd;而水平結構與雷射剝離技術、化學蝕刻剝離技術製作之垂直導通結構之之光輸出功率分別為45.7 mW、105.4 mW與98.3 mW。熱特性方面,紅外線熱影像分析此三種元件晶片表面溫度,傳統水平結構53.5 °C、雷射剝離技術與化學蝕刻剝離技術製作之垂直導通分別為42.4 °C及43.8 ℃,顯示氮化鎵薄膜經由基板轉移至導熱係數極佳的金屬銅後,可以得到較佳的散熱機制,較大電流操作下仍可維持良好的特性及穩定性。

This thesis presents the novel technique to perform chemical lift-off (CLO) GaN epilayer from sapphire substrate to copper substrate by 3-μm-width SiO2 narrow strips as sacrificial layer. The full LED structure was fabricated on both regular sapphire and the sapphire with 3-μm-width SiO2 narrow strips for evaluating the CLO feasibility in this work.
It was found that the full width at half maximum of epilayers diffraction peaks measured by x-ray diffraction system is 315, 317 and 310 arcsec for the GaN epilayer grown on sapphire, free standing by laser and chemical lift-off (LLO) and CLO, respectively. It suggests that CLO process could not damage the crystalline quality of GaN epilayer.
As concerning the device performance, the forward voltages (@20 mA) of original, LLO and CLO LEDs are 3.15 V, 2.37 V and 2.21 V, respectively. The corresponding series resistances are 82.57 Ω, 62.71 Ω and 53.70 Ω, respectively. At 350 mA, the luminous intensity of original, LLO and CLO LEDs is 1281.0 mcd、1909.3 mcd and 1826.3 mcd. The output power of original, LLO and CLO LEDs are respectively 45.7 mW, 105.4 mW and 98.3 mW. These results indeed verifie the feasibility of implementing chemical lift-off technique with the sacrificial layer of 3-μm-width SiO2 narrow strips. The surface temperatures for original, LLO and CLO LEDs are 53.5 °C, 42.4 °C and 43.8 °C, respectively. It is due to the copper providing a good conductivity and heat sink.
其他識別: U0005-2308201015570600
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.