Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4264
標題: 寬能隙氮化銦鎵太陽能電池製程技術之研發
Study on the Fabrication Technology of Wide Band Gap InGaN Solar Cells
作者: 陳泓叡
Chen, Hung-Ruei
關鍵字: InGaN;氮化銦鎵;solar cell;wafer bonding;laser lift-off;太陽能電池;晶圓鍵合;雷射剝離技術
出版社: 精密工程學系所
引用: [1] 蔡雨利、洪瑞華、吳志宏、趙志剛,光學工程,中華民國光學工程學會出版,100期,p. 1,2007。 [2] 美國國家再生能源實驗室 (NREL, http://www.nrel.gov ) [3] Martin A. Green, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, “Solar Cell Efficiency Tables (Version 33)”, Prog. Photovolt: Res. Appl., 17, pp. 85–94, 2009. [4] 林明獻,“太陽電池-技術入門”,全華出版社,台灣,2008。 [5] 莊家琛,“太陽能工程-太陽電池篇”,全華出版社,台灣,1997。 [6] Richard R. King et al., “Advances in High-Efficiency III-V Multijunction Solar Cells,” Advances in OptoElectronics, 29523, p. 8, 2007. [7] R. R. King, D. C. Law, K. M. Edmondson, et al., “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett., 90, p. 3, 2007. [8] J. F. Geisz et al., “High-efficiency GaInP/GaAs/InGaAs triplejunction solar cells grown inverted with a metamorphic bottom junction,” Appl. Phys. Lett., 91, p. 023502, 2007. [9] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III , E. E. Haller, Hai Lu, and William J. Schaff , “Small band gap bowing in In1–xGaxN alloys,” Appl. Phys. Lett., 80, p. 4741, 2002. [10] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, and J. W. Ager III, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. Lett., 94, p. 6477, 2003. [11] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., 80, p. 3967, 2002. [12] 施敏 原著,黃調元 譯著,“半導體元件物理與製程技術”,第二版,高立圖書有限公司,台灣,2002。 [13] D. A. Neamen “Semiconductor Physics and Devices,” the McGraw Hill Companies, 1997. [14] M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger process,” IEEE Trans Electron Devices, 31, p. 671, 1984. [15] J. Omkar, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett., 91, p. 132117, 2007. [16] J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, C. W. Wang, and E. K. Lin, “The effect of thermal annealing on the Ni/Au contact of p-type GaN,” J. Appl. Phys., 83, p. 3172, 1998. [17] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett., 78, p. 3265, 2001. [18] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P.DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium ni-tride optoelectronic devices,” Appl. Phys. Lett., 74, p. 3930, 1999. [19] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, “Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN”, Appl. Phys. Lett., 79, p. 2925, 2001. [20] C. S. Chang, S. J. Chang, Y. K. Su, C. H. Kuo, W. C. Lai, Y. C. Lin, Y. P. Hsu, S. C. Shei, J. M. Tsai, H. M. Lo, J. C. Ke, J. K. Sheu, “High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE Trans Electron Devices, 50, p. 2208, 2003. [21] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Enhanced output power of InGaN–GaN light-emitting diodes with high-transparency nickel-oxide–indium-tin-oxide ohmic contacts”, IEEE Photonics Technology Letters, 15, p. 646, 2003. [22] 蔡進譯,“超高效率太陽電池-從愛因斯坦的光電效應談起”,物理雙月刊,二十七卷五期 ,p. 701 ,2005。 [23] P. R. Tavernier and D. R. C. Dunn, “Mechanics of laser-assisted debonding of films,” J. Appl. Phys., 89, p. 1527, 2001. [24] Z. Li, X. Hu, K. Chen, R. Nie, X. Luo, X. Zhang, T. Yu, B. Zhang, S. Chen, Z. Yang, Z. Chen and G. Zhang, “Preparation of GaN-based cross-sectional TEM specimens by laser lift-off,” Micron, 36, p. 281, 2005. [25] M. V. Allmen and A. Blastter, Berlin, 2nd Springer Publisher , 1995. [26] R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, “On the thermal decomposition of GaN in vacuum”, Phys. Stat. Sol., 26, p. 353, 1974. [27] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, and M. Razeghi, “Thermal stability of GaN thin films grown on (0001) Al2O3, Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys., 76, p. 236, 1994. [28] M. E. Lin, B. N. Sverdlov, and H. Morkoc, “Thermal Stability of GaN Investigated by Low-temperature Photoluminescence Spectroscopy,” Appl. Phys. Lett., 63, p. 3625, 1993. [29] L. Ma, K. F. Adeni, C. Zeng, Y. Jin, K. Dandu, Y. Saripalli, M. Johnson, D. Barlage, “Recent Progress of Highly Reliable GaN-HEMT for Mass Production,” CS MANTECH Conference, p. 171, 2006. [30] M. Yamaguchi, Solar Energy Materials and Solar Cells, vol. 75, 261–269, 2003.
摘要: 
本論文主要研究氮化銦鎵太陽電池之元件特性,主要針對p-i-n結構太陽能電池之吸收層厚度及銦含量對氮化銦鎵太陽能電池的特性影響。吸收層厚度的增加,提升對入射光的吸光能力,而銦含量的增加可使i-InGaN的能隙變小,因此增加光電流的輸出。
本論文研究n-side up 元件之基板轉置之元件,結果發現藉由n-side up Thin InGaN Solar Cell結構,可有效控制吸光層n-GaN厚度,利用晶圓鍵合技術將氮化銦鎵太陽能電池薄膜轉移至具有高反射鏡面之矽基板上,雷射剝離技術把藍寶石基板移除,此具鏡面之基板有助於增加吸收層(In1-xGaxN)對於光的吸收。經由基板轉置之元件使用標準太陽模擬光源量測系統(AM1.5,one sun)量測效率,結果發現此元件之電流密度由0.47 mA/cm2 增加為0.77 mA/cm2,電流密度相對提昇64%,而轉換效率由0.71%提昇至1.24%,轉換效率提升的比例為75%。由此發現,此具高反射金屬鏡面之矽基板結構的確有利於增加其光路在吸收層來回激發電子-電洞,對於氮化銦鎵太陽能電池的光電特性有顯著的提升。

This thesis presents the fabrication of indium-gallium-nitride (InGaN) Solar Cell. The i-layer thickness of p-i-n structure and indium composition will be compared and discussed. The photocurrent of InGaN Solar Cell is increased with i-layer thickness increased.
The band gap of InGaN material is effecfed indium composition. The band gap of InGaN material is decreased with indium composition increased. The small band gap of InGaN Solar Cell leads the performance of Solar Cell and results in increased the photocurrent.
Due to the GaN window layer absorbing light, we use the n-side up thin InGaN solar structure to reduce the effect of GaN window layer. The InGaN solar cell on sapphire was fabricated by laser lift-off technique to remove sapphire and then transferring the remaining p-i-n structure onto a Ti/Ag mirror-coated Si substrate via wafer bonding. The mirror structure can enhance light absorption for InGaN solar cell with a thin absorption layer. After the epilayer transfer, upon illuminating by standard solar simulator measurement system (one sun, 25oC, AM1.5G, 100 mW/cm2), it is found the current density of solar cell was improved from 0.47 mA/cm2 to 0.77 mA/cm2. The device exhibits an enhancement factor of 64% in current density. That is it corresponds an increment in conversion efficiency from 0.71 % to 1.24%, the device exhibits an enhancement factor of 75% in conversion efficiency. It is attributed that this structure really has advantage to enhance the light absorption for solar cell application.
URI: http://hdl.handle.net/11455/4264
其他識別: U0005-2308201022163000
Appears in Collections:精密工程研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.