Please use this identifier to cite or link to this item:
標題: 側向發光二極體之封裝結構優化與驗證
Optimization and Verification of Package Design for Side-View White LEDs
作者: 柯富耀
Ke, Fu-Yao
關鍵字: Side view Light-Emitting Diode;側向發光二極體;Assembly;SPEOS;DOE;封裝;SPEOS;實驗計畫法
出版社: 精密工程學系所
引用: 參考文獻 [1] 史光國, “半導體發光二極體及固態照明,” 全華科技圖書股份有限公 司, 台灣 [2] A. Zukauskas, M. Shur, and R. Gaska, “Introduction to Solid-State Lighting”, John Wiley, New York, (2002), pp. 35-55. [3] E. F. Schubert, “Light Emitting Diodes” (Cambridge University Press, Cambridge, (2003), pp. 27-46. [4] T. Taguchi, Yamaguchi University,“Light Gets Solid,”SPIE’s oemagazine 5, (2003), p. 13. [5] S. Aanegola, J. Petroski, and E. Radkov, GELcore LLC, “let there Be LIGHT,” SPIE’s oemagazine 5, (2003), p. 16. [6] E. F. Schubert, “Light Emitting Diodes” (Cambridge University Press, Cambridge), (2003), pp. 59-84. [7] B. E. A. Saleh, and M. C. Teich, “Fundamentals of photonics”, John Wiley & Sons, (1991), pp. 326-402. [8] 黃柏誠, “大面積高功率發光二極體導光元件之設計,”中央大學光 電所, (2004)。 [9] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. C. Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner , H. C. Chui, J. W. Huang , S. A. Stockman, F. A. Kish, and M. G. Craford, “High-power truncated-pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett. vol. 75, p. 2365, (1999). [10] R. H. Horng, D. S. Wuu, and S. C. Wei, “AlGaInP /AuBe /glass light emitting diodes fabricated by wafer bonding technology,” Appl. Phys. Lett. 75, p. 154, (1999). [11] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72%externally, from AlGaAs / GaAs / AlGaAs double heterostructures,” Appl. Phys. Lett. 62, p. 131, (1993). [12] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, “III-nitride blue microdisplays, ” Appl. Phys. Lett. 78, p. 9, (2001). [13] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, T.C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R.S. Kern, and S. A. Stockman,“High-power AlGaInN flip-chip lighting diodes,” Appl. Phys. Lett. 78, p. 3379, (2001). [14] 許招墉, “照明設計,” 全華科技圖書, Nov. (1999), pp. 7-25. [15] R. O. Kuehl , “ Design of Experiments : Statistical Principles of Research Design and Analysis,” 2nd edition, 2000, Pacific Grove, CA. [16] C. R. Hicks, “Fundamental Concepts in the Design of Experiments,” 3rd edition, Saunders College Publishing, FL, (1982), pp. 205-251. [17] D. C. Montgomery, “Design and Analysis of Experiments”, 4th edition, John Wiley & Sons, New York, (1997), pp. 10-68. [18]G. Taguchi, “Taguchi Methods / Design of Experiments, Dearborn MI /ASI Press”, Tokyo, (2004), pp. 17-33. [19] 鐘清章, “田口式品質工程導論,” 中華民國品質學會, 台北, 2003. [20] 丁志華, 戴寶通, “田口實驗計畫法簡介(I),” 國家毫微米元件實 驗室, 毫微米通訊, 第八卷第三期,2002. [21] 王耀東, “液晶顯示器之直下型背光光學效能最佳化之研究,” 元智 大學機械工程所, (2004). [22] R. S. Berns, “Billmeyer and Saltzman’s Principles of Color Technology, Third Edition,” John Wiley & Sons, (2000), p. 75-95. [23] Solvay Advanced Polymers, ,如附件1。
本論文主要以側向發光二極體( Side view LED )的封裝結構為研究主題,藉由改變Side view LED封裝結構內部的幾何設計,來達到提升現行Side view LED光通量與增加其發光效率的目的。論文中將先以實驗計畫法( Design of experiment, D.O.E )找出現行Side view LED封裝結構中影響光通量出光效率的主要因子,其主要因子為「內部結構深度」與「內部出光角度」,再將二項主要因子進行不同的組合實驗,並搭配Speos光學軟體進行模擬,依照分析模擬後的結果,決定二組新佳化參數設計進行實體開模驗證。
依LED元件封裝製程技術,將本論文所設計的二組封裝結構及現行Side view LED封裝結構進行實體封裝,現行Side view LED封裝結構封裝後的平均光通量、發光效率、軸向光強度分別為3.85(lm),60.63(lm/W),1.419(cd)。本論文設計的封裝結構設計I封裝後,平均光通量,發光效率,軸向光強度分別為4.45(lm)、68.42(lm/W)及1.556(cd)。封裝結構設計II封裝後,平均光通量、發光效率及軸向光強度分別為4.89(lm)、78.32(lm/W)及1.76(cd)。因此不論是封裝結構設計I或II皆優於現行Side view LED封裝結構,確實證明本論文的研究方向能提高Side view LED封裝結構的光通量與發光效率,最佳化的結構參數為封裝結構設計II,其平均光通量的出光效率較現行Side view LED封裝結構提高27.01 %、發光效率提升29.18%及軸向光強度提升20.93%。

The study of this paper is The Structure of Assembly of Side View LED; main purpose is to increase the luminous flux and increase efficiency of luminosity of side view LED by changing the structure of assembly. The proposition is to use D.O.E. (Design of experiment) to find out the main factor which caused influence of efficiency of luminous flux on side view LED; and, two main factors were found - depth and optical degree of inner structure. Experimenting with different combination and simulate by using SPEOS optics system; after analysis test results, selected two best parameters to test and verify by setting up mold.
In accordance with packaging assembly technology of LED component, packaging side view LED with current package structure and two designed structure in this paper then compare the performance of LED. The average of luminous flux, luminous efficiency, axial light intensity of current packaging of side view LED was 3.85(lm), 60.63(lm/W) and 1.419(cd); the average of luminous flux, luminous efficiency, axial light intensity of designed packaging (I) in this paper was 4.45(lm), 68.42(lm/W) and 1.556(cd); the average of luminous flux, luminous efficiency, axial light intensity of designed packaging (II) in this paper was 4.89(lm), 78.32(lm/W) and 1.76(cd).
The averages approve, designed I and designed II, either one are superior to the current package structure of Side view LED. It indicates direction of the research indeed improves the luminous flux and luminous efficiency of Side view LED package structure. To sum up, the best parameters for the package structure is designed II; the average of luminous flux increasing 27.01%, the light efficiency increasing 29.1%, and the axial light intensity increasing 29.18% after we compare designed II with current structure.
其他識別: U0005-2408201009485700
Appears in Collections:精密工程研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.