Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/4267
標題: 氧化鎵薄膜備製分析與應用
Investigation and Applications of Gallium Oxide Thin Films
作者: 傅于娟
Fu, Yu-Chuan
關鍵字: pulsed laser deposition;脈衝雷射沈積;gallium oxide;etching;hydrofluoric acid;chemical lift-off;gallium nitride;氧化鎵;氫氟酸;蝕刻;化學轉移基板法;氮化鎵
出版社: 精密工程學系所
引用: [1] 史光國, “半導體發光二極體及固態照明”, 全華科技圖書股份有限公司, 台灣 [2] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O''Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett., vol. 78, p. 3379, 2001. [3] M. Koike, N. Shibata, H. Kato, Y. Takahashi, “Development of high efficiency GaN-based multiquantum-welllight-emitting diodes and their applications”, IEEE, vol. 8, p. 271, 2002. [4] H. Kim, K. K. Kim, K. K. Choi, H. K., J. O. Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry”, Appl. Phys. Lett., vol. 91, p. 023510, 2007. [5] C. Fu. Chu, C. C. Yu, H. C. Ceng, C.F. Lin and S. C. Wang, “Comparison of p-Side down and p-side up GaN light-emitting diodes fabricated by laser lift-off”, Jpn. J. Appl. Phys., vol. 42, p. 147, 2003. [6] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, “High-power GaN–mirror–Cu light-emitting diodes for vertical current injection using laser liftoff and electroplating techniques”, IEEE Photo. Tech. Lett., vol. 17, no. 9, p. 1908, 2005. [7] H. Y. Kuo, S. J. Wang, P. R. Wang, K. M. Uang, T. M. Chen and H. Kuan, “A Sn-based metal substrate technology for the fabrication of vertical-structured GaN-based light-emitting diodes”, Appl. Phys. Lett., vol. 92, p. 021105, 2008. [8] J. S. Ha, S. W. Lee, H. J. Lee, H. J. Lee, S. H. Lee, H. Goto, T. Kato, K. Fujii, M. W. Cho, and T. Yao, “The Fabrication of Vertical Light-emitting diodes using chemical lift-off process”, IEEE Photo. Tech. Lett., vol. 20, no. 3, p. 175, 2008. [9] Y. C. S. Wu, P. Lin, “Method for transferring epitaxy layer”, U.S. Patent, US 6, 686, 257, B2, 2002. [10] M. Koike, S. Yazasaki, “Method for producing group III nitride compound semiconductor”, U.S. Patent, US7, 112, 243, B2, 2001. [11] E. L. Hu, R. A. Stonas, “Photoelectrochemical undercut etching of semiconductor material”, U.S. Patent, US6, 884, 740, 2001. [12] M. Senda, N. Shibata, J. Ito, T. Chiyo, “III group nitride based semiconductor element and method for manufacture thereof”, U.S. Patent, US6, 875, 629, 2001. [13] Y. Quan, D. Fang, X. Zhang, S. Liu and K. Huang, “Synthesis and characterization of gallium oxide nanowires via a hydrothermal method”, Mat. Chem. Phys., vol. 121, p. 142, 2010. [14] M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures”, Thin Solid Films, vol. 411, p. 134, 2002. [15] D. P. Norton, “Synthesis and properties of epitaxial electronic oxide thin-film materials”, Mater. Sci. Eng. R, vol. 43, p. 139, 2004. [16] E.G. Villora, K. Shimamura, T. Ujiie, and K. Aoki, “Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature”, Appl. Phys. Lett., vol. 92, p. 202118, 2008. [17] Z. Ji, J. Du, J. Fan, W. Wang, “Gallium oxide films for filter and solar-blind UV detector”, Opt. Mater., vol. 28, p. 415, 2006. [18] C. I. Baban, Y. Toyoda, and M. Ogita, “High temperature oxygen sensor using a Pt–Ga2O3–Pt sandwich structure”, Jpn. J. Appl. Phys., vol. 43, p. 7213, 2004. [19] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3”, Appl. Phys. Lett., vol. 88, p. 092106, 2006. [20] H. Hayashi, R. Huang, H. Ikeno, F. Oba, S. Yoshioka, and I. Tanaka, “Room temperature ferromagnetism in Mn-doped γ-Ga2O3 with spinel structure”, Appl. Phys. Lett., vol. 89, p. 181903, 2006. [21] P. Wellenius, A. Suresh, and J. F. Muth, “Bright, low voltage europium doped gallium oxide thin film electroluminescent devices”, Appl. Phys. Lett., vol. 92, p. 021111, 2008. [22] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors”, Appl. Phys. Lett., vol. 90, p. 031912, 2007. [23] Z. Ji, J. Du, J. Fan, and W. Wang, “Gallium oxide films for filter and solar-blind UV detector”, Opt. Mater., vol. 28, p. 415, 2006. [24] T. Oshima, N. Arai, N. Suzuki, S. Ohira, S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy”, Thin Solid Films, vol. 516, p. 5768, 2008. [25] H. W. Kim and N. H. Kim, “Annealing effects on the properties of Ga2O3 thin films grown on sapphire by the metal organic chemical vapor deposition”, Appl. Surf. Sci., vol. 230, p. 301, 2004. [26] S. Strite, H. MorcocE, J., “GaN, AlN, and InN: A review”, Vac. Sci. Technol. B, vol. 10, p. 1237, 1992. [27] S. Nakamura, T. Mukai, M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes”, Appl. Phys. Lett., vol. 64, p. 1687, 1994. [28] M. V. Rao, W.P. Hong, C. Caneau, G.K. Chang, N. Papanicolaou, H.B. Dietrich, “In0.53Ga0.47As metal‐semiconductor‐metal photodetector using proton bombarded p‐type material”, J. Appl. Phy., vol. 70, p. 3943, 1991. [29] R.F. Service, “Will UV lasers beat the blues?”, Science, vol. 276, p. 895, 1997. [30] 陳銘堯,“簡介脈衝雷射蒸鍍法”, 物理雙月刊, 15卷, 5期, 1993. [31] 翁明壽,“高性能鍍膜雷射脈衝電弧度膜技術”, 工業材料雜誌, 182期, p. 81, 2002. [32] B. D. Cullity, S. R. Stock, “Elements of x-ray diffraction”, Third Edition, Prentice Hall Publishers, 2003. [33] J. Goldstein, “Scanning Electron Microscopy and X-ray microanalysis”, Plenum Publishers, 2003. [34] 譚增魯,“醫學細胞生物學”, 北京醫科大學出版社, 2000. [35] 陳隆建,“發光二極體之原理與製程”, 全華圖書股份有限公司, 2006. [36] B. V. Crist, “Annotated handbooks of monochromatic XPS Spectra”, Mountain View, international LLC, 2005. [37] V. Gottschalch, K. Mergenthaler, G. Wagner, J. Bauer, H. Paetzelt, C. Sturm, and U. Teschner, “Growth of β-Ga2O3 on Al2O3 and GaAs using metal-organic vapor-phase epitaxy”, Phys. stat. sol. A, vol. 206, p. 243, 2009. [38] S. J. Kang, Y. H. Joung, H. H. Shin, Y. S. Yoon, “Effect of substrate temperature on structural, optical and electrical properties of ZnO thin films deposited by pulsed laser deposition”, J. Mater. Sci: Mater. Electron., vol. 19, p. 1073, 2008. [39] K. Prabakar, S. Venkatachalam, Y. L. Jeyachandran, Sa. K. Narayandass, D. Mangalaraj, “Microstructure, Raman and optical studies on Cd0.6Zn0.4Te thin films”, Phys. B, vol. 107, p. 99, 2004. [40] O. Shigeo, A. Naoki, “Wet chemical etching behavior of β-Ga2O3 single crystal”, Phys. stat. sol. C, vol. 5, p. 3116, 2008. [41] L. W. Zhao, C. C. Liu, X. Y. Teng, S. L. Sun, W. Zhang, J. S. Zhu, Y. C. Feng and B. P. Guo, “The surface topography of GaN grown on Si (1 1 1) substrate before and after wet chemical etching”, Mater. Sci. Semicond. Process, vol. 9, p. 403, 2006. [42] Y. J. Lin, C. D. Tsai, Y. T. Lyu, and C. T. Lee, “X-ray photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers”, Appl. Phys. Lett., vol. 77, p. 687, 2000. [43] R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, and T. Venkatesanb, “Growth of epitaxial GaN films by pulsed laser deposition”, Appl. Phys. Lett., vol. 71, p. 102, 1997. [44] J. Zhang, B. Li, C. Xia, Q. Deng, J. Xu, G. Pei, F. Wu, Y. Wu, H. Shi, W. Xu, Z. Yang, “Growth and properties of ZnO thin film on β-Ga2O3 (1 0 0) substrate by pulsed laser deposition”, J. Cryst. Growth, vol. 296, p. 186, 2006.
摘要: 
本論文利用脈衝雷射沈積法成長氧化鎵薄膜於(0001)面藍寶石基板上,成長溫度範圍從400℃至1000℃,雷射氣體為波長248 nm之氟化氪,論文中利用X光繞射儀、薄膜測厚儀、原子力顯微鏡與X光電子頻譜分析儀檢測氧化鎵薄膜之結晶特性、光學性質及元素成份,並於室溫中利用49 mol%的氫氟酸溶液蝕刻氧化鎵薄膜,觀察其蝕刻特性。研究發現氧化鎵薄膜在250~275 nm波段有很明顯的吸收曲線,由穿透光譜推算氧化鎵能隙範圍為4.9~4.5 eV;經由改變成長溫度的實驗觀察到低溫400℃成長之氧化鎵薄膜為非晶結構,薄膜內的鎵原子與氧原子比為0.55:0.45,因低溫成長之氧化鎵薄膜的結晶性較差而容易被蝕刻,蝕刻速率可達491 nm/sec,隨著基板溫度增加至1000℃,氧化鎵薄膜的結晶品質提升而降低蝕刻率。本論文之主軸即為探討薄膜的結晶品質與蝕刻率之間的關係,此研究同時也是作為化學轉移基板法之基礎。
本論文同時利用脈衝雷射沈積法製備氮化鎵薄膜,並成長於不同溫度條件下之氧化鎵薄膜上,探討氧化鎵薄膜的成長溫度對氮化鎵薄膜結晶品質之影響。研究發現氮化鎵薄膜(002)面X光繞射光譜之半高寬會隨著氧化鎵薄膜的成長溫度增加而變窄,表示氮化鎵薄膜成長在沈積溫度為1000℃的氧化鎵薄膜上有較好的結晶品質,經X光繞射儀及原子力顯微鏡檢測,氮化鎵薄膜(002)面的半高寬為1170 arcsec且表面粗糙度為5.91 nm。另一方面,在應用部分,本研究利用脈衝雷射沈積氧化鎵薄膜於藍寶石基板上作為化學蝕刻移除層,並且在氧化鎵薄膜上堆疊氮化鎵薄膜,配合電鍍法製備鎳基板作為磊晶膜轉移後之永久基板,氧化鎵薄膜可利用氫氟酸溶液側向蝕刻移除,如此一來便可將氮化鎵薄膜與藍寶石基板分離,以此新穎技術可完整轉移兩吋面積的氮化鎵薄膜至鎳基板上。
URI: http://hdl.handle.net/11455/4267
其他識別: U0005-2502201111195000
Appears in Collections:精密工程研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.