Please use this identifier to cite or link to this item:
標題: 使用聚對二甲苯基材研製軟性非晶矽薄膜太陽電池
Fabrication of Flexible a-Si Thin-Film Solar Cells on Parylene Substrates
作者: 張家豪
Chang, Chia-Hao
關鍵字: flexible;非晶矽薄膜太陽電池;a-Si thin-film solar cell;HF-PECVD;parylene;barrier layer;direct Separation;高頻率電漿化學輔助沉積;聚對二甲苯;氣體阻隔層;直接分離技術
出版社: 精密工程學系所
引用: [1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., Vol. 80, pp. 3967-3969, 2002. [2] R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures,” Appl. Phys. Lett., Vol. 47, pp. 322-324, 1986. [3] 美國國家再生能源實驗室 (NREL, [4] 莊家琛,“太陽能工程-太陽電池篇”,全華出版社,台灣,1997。 [5] K. Koski, J. Hölsä, P. Juliet, Z.H. Wang, R. Aimo and K. Pischow, “Characterization of aluminium oxide thin films deposition on polycarbonate substrate by reactive magnetron sputtering” Mater. Sci. and Eng. B, Vol. 65, pp. 94-105, 1999. [6] A. S. da Silva Sobrinho, G. Czeremuszkin, M. Latrèche and M. R. Wertheimer, “Defect-permeation correlation for ultrathin transparent barrier coatings on polymers” J. Vac. Sci. Technol. A, Vol. 18, pp. 149-157, 2000. [7] H. Lin, L. Xu, X. Chen, X. Wang, M. Sheng, F. Stubhan, K. Merkel and J. Wilde, “Moisture-resistant properties of SiNx films prepared by PECVD” Thin Solid Films, Vol. 333, pp. 71-76, 1998. [8] [9] 徐武軍,“高分子材料導論”,五南圖書出版股份有限公司,2004。 [10] J. Noordegraaf and H. Hull, “C-shield parylene allows major weight saving for EM shielding of microelectronic,” The First IEEE Inter. Symp. on Polymeric Packaging, pp. 189-196, 1997. [11] Q. Yu, J. Deffeyes and H. Yasuda, “Engineering the surface and interface of Parylene C coatings by low-temperature plasmas,” Prog. Org. Coat., Vol. 41, pp. 247-253, 2001. [12] M. Liger, T. A. Harder, Y.C. Tai and S. Konishi, “Parylene-pyrolyzed carbon for MEMS applications,” IEEE, 17th IEEE Inter. Con. on MEMS, pp. 161-164, 2004. [13] Y. H. Kim, D. G. Moon and J. I. Han, “Organic TFT array on a paper substrate,” IEEE Electron Device Lett., Vol. 25, pp. 702-704, 2004. [14] A. Tooker, E. Meng, J. Erickson, Tai, Y.-C and J. Pine, “Development of biocompatible parylene neurocages,” IEEE 26th Annual Inter. Con. of the Engineering in Medicine and Biology Soc., Vol. 1, pp. 2542-2545, 2004. [15] J. Ni, J. Zhang, J. Xue, X. Wang, L. Cao and C. Wu, “Effect of pretreatment on PET films and its application for flexible amorphous silicon solar cells,” IEEE (PVSC) 34th, pp. 293-296, 2009. [16] Y. LI, and D. DU, “Characterization of low temperature deposited flexible amorphous silicon solar cells,” IEEE Inter. Conf. on Energy and Environment Technol., Vol. 1, pp. 548-551, 2009. [17] S. R. Jeon, Y. Ho. Song, H. J. Jang, and G. M. Yang, “Boron doped hydrogenated nanocrystalline silicon thin films prepared by layer-by-layer technique and its application in n-i-p flexible amorphous silicon thin film solar cells,” 4th IEEE Inter. Conf. on MEMS, pp. 327-330, 2009. [18] “PERMATRAN-W Model 3/61 Operator’s Manual”, mocon Chaper 4-5. [19] “OX-TRAN Model 2/61 Operator’s Manual”, mocon Chaper 4-5. [20] G. Nisato, P. C. P. Bouten, P. J. Slikkerveer, W. D. Bennett, G. L. Graff, N. Rutherford and L. Wiese, “Evaluating high performance diffusion barrier: the calcium test”, Proc. Asia Display/IDW01, pp. 1435-1438, 2001. [21] A. K. Sharma, and H. Yasuda, “Effect of glow discharge treatment of substrates on parylene-substrate adhesion,” J. Vac. Sci. Technol., Vol. 21, pp. 994-997, 1982. [22] 陳永培,“可撓式矽基薄膜電晶體之研製與特性研究”,中興大學材料科學系碩士論文,2006。 [23] 陳采寧,“可撓性阻氣膜之設計、製作與應用”,中興大學材料科學系博士論文,2009。 [24] D. S. Wuu, T. N. Chen, C. C. Wu, C. C. Chiang, Y. P. Chen, R. H. Horng, “Effects of plasma pretreatment on silicon nitride barrier films on polycarbonate substrates,” Thin Solid Films, Vol. 514, pp. 188–192, 2006.
軟性非晶矽薄膜太陽電池是利用高頻率電漿化學輔助沉積系統(27.13 MHz) 沉積非晶矽薄膜太陽電池在高穿透率聚對二甲苯基板所得,為了改善高分子聚對二甲苯基板的表面形態,利用了Ar, N2和O2氣電漿和退火製程對基板做預處理,降低了聚對二甲苯基板表面粗糙度和增加聚對二甲苯基板的光透明度,為了讓對聚對二甲苯基板穿透度變佳和降低水氣穿透率影響,我們鍍製了單層以及多層無機薄膜氮化矽和氧化矽之氣體阻隔層當作緩衝層在聚對二甲苯基板上。當非晶矽薄膜太陽能電池製程完成後,利用直接分離技術從玻璃基板上可得到軟性非晶矽薄膜太陽電池。其軟性非晶矽薄膜太陽電池轉換效率為5.78 %、開路電壓為0.74 V、短路電流密度為15.69 mA/cm2、填充因子為54.98 %。經過五千次撓曲測試後量測效率後可得到開路電壓為0.71 V、短路電流密度為14.96 mA/cm2、填充因子為50.7 %及轉換效率為4.94 %之軟性非晶矽薄膜太陽電池。此結果有助於日後將非晶矽薄膜太陽能電池應用於軟性電子元件上。

A free-standing flexible amorphous silicon (a-Si) thin-film solar cell was fabricated by high-frequency (27.13 MHz) plasma-enhanced chemical vapor deposition (HF-PECVD) system on a high-transmittance parylene substrate. To improve the surface state of polymer substrates, Ar, N2, and O2 plasma-treated and annealed parylene substrates have been investigated for reducing parylene surface roughness and increasing the optical transmittance. Single and multilayer inorganic barrier layers as a buffer layer have been coated on parylene substrates. These buffer layers have different optical characteristics of incident sun light and can decrease the water vapor transmission rate. After the fabrication process of a-Si solar cells finished, a direct separation process was performed to obtain a free-standing flexible a-Si thin-film solar cell. The performance of the free-standing flexible a-Si thin-film solar cell was measured. The results showed that the free-standing solar cell has open-circuit voltage (Voc) of 0.74 V, short-circuit current density (Jsc) of 15.69 mA/cm2, fill factor (FF) of 54.98 %, and the conversion efficiency of 5.78 %. Moreover, after a cyclic bending test for 5000 times, the Voc of 0.71 V, Jsc of 14.96 mA/cm2, FF of 50.7 %, and the conversion efficiency of 4.94 % could be obtained. These are very encouraging results for future fabrication of a-Si thin-film solar cells by using flexible electron devices.
其他識別: U0005-2508201014494100
Appears in Collections:精密工程研究所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.